Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, USA.
Acc Chem Res. 2010 Aug 17;43(8):1115-24. doi: 10.1021/ar100023y.
Molecular recognition, an important process in biological and chemical systems, governs the diverse functions of a variety of enzymes and unique properties of some synthetic receptors. Because molecular recognition is based on weak interactions between receptors and substrates, the design and assembly of synthetic receptors to mimic biological systems and the development of novel materials to discriminate different substrates for selective recognition of specific molecules has proved challenging. The extensive research on synthetic receptors for molecular recognition, particularly on noncovalent complexes self-assembled by hydrogen bonding and metal-organic coordination, has revealed some underlying principles. In particular, these studies have demonstrated that the shapes of the supramolecular receptors play significant roles in their specific and selective recognition of substrates: receptors can offer concave surfaces that complement their convex targets. This Account describes our research to develop a synthetic molecular recognition platform using porous metal-organic frameworks (MOFs). These materials contain functional pores to direct their specific and unique recognition of small molecules through several types of interactions: van der Waals interactions of the framework surface with the substrate, metal-substrate interactions, and hydrogen bonding of the framework surface with the substrate. These materials have potential applications for gas storage, separation, and sensing. We demonstrate a simple strategy to construct a primitive cubic net of interpenetrated microporous MOFs from the self-assembly of the paddle-wheel clusters M(2)(CO(2))(4) (M = Cu(2+), Zn(2+), and Co(2+)) with two types of organic dicarboxylic acid and pillar bidentate linkers. This efficient method allows us to rationally tune the micropores to size-exclusively sort different small gas molecules, leading to the highly selective separation and purification of gases. By optimizing the strong interactions between open metal sites within porous MOFs and gas molecules such as hydrogen and acetylene, we have developed several MOF materials with extraordinary acetylene storage capacity at room temperature. We have also immobilized Lewis acidic and basic sites into luminescent porous MOFs to recognize and sense neutral and ionic species. Using the strategy to systematically immobilize different open metal sites within porous MOFs from the metalloligand precursors, we have developed the first microporous mixed-metal-organic framework (M'MOF) with enhanced affinity for hydrogen molecules, which successfully separated D(2) from H(2) using kinetic isotope quantum molecular sieving. Because we can functionalize the pores to direct their specific recognition of small molecules, the emerging porous MOFs serve as novel functional materials for gas storage, separation, heterogeneous catalysis, and sensing.
分子识别是生物和化学系统中的一个重要过程,它控制着各种酶的多种功能和一些合成受体的独特性质。由于分子识别是基于受体和底物之间的弱相互作用,因此设计和组装合成受体以模拟生物系统以及开发新型材料来区分不同的底物以选择性识别特定分子一直具有挑战性。对分子识别的合成受体的广泛研究,特别是对氢键和金属有机配位自组装的非共价复合物的研究,揭示了一些基本原理。特别是,这些研究表明,超分子受体的形状在其对底物的特异性和选择性识别中起着重要作用:受体可以提供互补其凸靶的凹面。本说明描述了我们使用多孔金属有机骨架 (MOF) 开发合成分子识别平台的研究。这些材料包含功能孔,通过几种类型的相互作用指导其对小分子的特异性和独特识别:骨架表面与底物的范德华相互作用、金属与底物的相互作用以及骨架表面与底物的氢键。这些材料在气体储存、分离和传感方面具有潜在的应用。我们展示了一种简单的策略,通过自组装桨轮簇 M(2)(CO(2))(4)(M = Cu(2+)、Zn(2+) 和 Co(2+))与两种类型的有机二羧酸和支柱双齿配体,构建互穿微孔 MOF 的基本立方网。这种高效的方法允许我们合理地调节微孔以尺寸排他性地对不同的小气体分子进行分类,从而实现气体的高度选择性分离和纯化。通过优化多孔 MOF 内开放金属位点与氢气和乙炔等气体分子之间的强相互作用,我们开发了几种具有在室温下储存大量乙炔能力的 MOF 材料。我们还将路易斯酸和碱性位点固定在发光多孔 MOF 中,以识别和检测中性和离子物种。通过使用从金属配合物前体制备多孔 MOF 中不同开放金属位点的系统固定策略,我们开发了第一个对氢分子具有增强亲和力的微孔混合金属有机骨架 (M'MOF),成功地使用动力学同位素量子筛分从 H(2) 中分离出 D(2)。由于我们可以对孔进行功能化以指导它们对小分子的特异性识别,新兴的多孔 MOF 可用作气体储存、分离、多相催化和传感的新型功能材料。