Suppr超能文献

比例尖峰时间精度和发放可靠性是周期性和包络形状线索的高效时间处理的基础。

Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues.

机构信息

Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.

出版信息

J Neurophysiol. 2013 Aug;110(3):587-606. doi: 10.1152/jn.01080.2010. Epub 2013 May 1.

Abstract

Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here we demonstrate that single neurons in the auditory midbrain employ a proportional code in which spike-timing precision and firing reliability covary with the sound envelope cues to provide an efficient representation of the stimulus. Spike-timing precision varied systematically with the timescale and shape of the sound envelope and yet was largely independent of the sound modulation frequency, a prominent cue for pitch. In contrast, spike-count reliability was strongly affected by the modulation frequency. Spike-timing precision extends from sub-millisecond for brief transient sounds up to tens of milliseconds for sounds with slow-varying envelope. Information theoretic analysis further confirms that spike-timing precision depends strongly on the sound envelope shape, while firing reliability was strongly affected by the sound modulation frequency. Both the information efficiency and total information were limited by the firing reliability and spike-timing precision in a manner that reflected the sound structure. This result supports a temporal coding strategy in the auditory midbrain where proportional changes in spike-timing precision and firing reliability can efficiently signal shape and periodicity temporal cues.

摘要

时间声音线索对于声音识别、音高、节奏和音色感知至关重要,但听觉神经元如何对这些线索进行编码仍然存在争议。率编码理论提出,时间声音特征由调谐调制滤波器的率来表示。然而,压倒性的证据也表明,精确的尖峰时间是神经编码的一个基本属性。在这里,我们证明了听觉中脑中的单个神经元采用比例编码,其中尖峰时间精度和发射可靠性与声音包络线索相关,为刺激提供了有效的表示。尖峰时间精度与声音包络的时标和形状系统地变化,但在很大程度上独立于声音调制频率,这是音高的一个突出线索。相比之下,尖峰计数可靠性受调制频率的强烈影响。尖峰时间精度从短暂瞬态声音的亚毫秒扩展到具有缓慢变化包络的声音的数十毫秒。信息论分析进一步证实,尖峰时间精度强烈依赖于声音包络形状,而发射可靠性强烈受声音调制频率的影响。信息效率和总信息量都受到发射可靠性和尖峰时间精度的限制,这种限制方式反映了声音结构。这一结果支持了听觉中脑中的一种时间编码策略,其中尖峰时间精度和发射可靠性的比例变化可以有效地发出形状和周期性时间线索。

相似文献

2
Neural spike-timing patterns vary with sound shape and periodicity in three auditory cortical fields.
J Neurophysiol. 2016 Apr;115(4):1886-904. doi: 10.1152/jn.00784.2015. Epub 2016 Feb 3.
4
Cues for sound localization are encoded in multiple aspects of spike trains in the inferior colliculus.
J Neurophysiol. 2008 Apr;99(4):1672-82. doi: 10.1152/jn.00644.2007. Epub 2008 Jan 30.
5
Temporal Envelope Coding by Inferior Colliculus Neurons with Cochlear Implant Stimulation.
J Assoc Res Otolaryngol. 2017 Dec;18(6):771-788. doi: 10.1007/s10162-017-0638-4. Epub 2017 Jul 17.
7
Temporal properties of responses to sound in the ventral nucleus of the lateral lemniscus.
J Neurophysiol. 2014 Feb;111(4):817-35. doi: 10.1152/jn.00971.2011. Epub 2013 Nov 27.
8
Pitch of harmonic complex tones: rate and temporal coding of envelope repetition rate in inferior colliculus of unanesthetized rabbits.
J Neurophysiol. 2019 Dec 1;122(6):2468-2485. doi: 10.1152/jn.00512.2019. Epub 2019 Oct 30.
9
Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.
J Neurosci. 2016 Sep 21;36(38):9908-21. doi: 10.1523/JNEUROSCI.1421-16.2016.
10
A Hierarchy of Time Scales for Discriminating and Classifying the Temporal Shape of Sound in Three Auditory Cortical Fields.
J Neurosci. 2018 Aug 1;38(31):6967-6982. doi: 10.1523/JNEUROSCI.2871-17.2018. Epub 2018 Jun 28.

引用本文的文献

1
Hearing as adaptive cascaded envelope interpolation.
Commun Biol. 2023 Jun 24;6(1):671. doi: 10.1038/s42003-023-05040-5.
2
Responses to dichotic tone-in-noise stimuli in the inferior colliculus.
Front Neurosci. 2022 Dec 1;16:997656. doi: 10.3389/fnins.2022.997656. eCollection 2022.
3
Theoretical Relationship Between Two Measures of Spike Synchrony: Correlation Index and Vector Strength.
Front Neurosci. 2021 Dec 20;15:761826. doi: 10.3389/fnins.2021.761826. eCollection 2021.
4
Harmonic Cancellation-A Fundamental of Auditory Scene Analysis.
Trends Hear. 2021 Jan-Dec;25:23312165211041422. doi: 10.1177/23312165211041422.
5
Rate and Temporal Coding of Regular and Irregular Pulse Trains in Auditory Midbrain of Normal-Hearing and Cochlear-Implanted Rabbits.
J Assoc Res Otolaryngol. 2021 Jun;22(3):319-347. doi: 10.1007/s10162-021-00792-5. Epub 2021 Apr 23.
6
Developmentally Regulated Rebound Depolarization Enhances Spike Timing Precision in Auditory Midbrain Neurons.
Front Cell Neurosci. 2020 Aug 6;14:236. doi: 10.3389/fncel.2020.00236. eCollection 2020.
7
Rapid Brain Responses to Familiar vs. Unfamiliar Music - an EEG and Pupillometry study.
Sci Rep. 2019 Oct 30;9(1):15570. doi: 10.1038/s41598-019-51759-9.
8
Pitch of harmonic complex tones: rate and temporal coding of envelope repetition rate in inferior colliculus of unanesthetized rabbits.
J Neurophysiol. 2019 Dec 1;122(6):2468-2485. doi: 10.1152/jn.00512.2019. Epub 2019 Oct 30.
9
Resurgent Na+ Current Offers Noise Modulation in Bursting Neurons.
PLoS Comput Biol. 2019 Jun 21;15(6):e1007154. doi: 10.1371/journal.pcbi.1007154. eCollection 2019 Jun.
10
A Hierarchy of Time Scales for Discriminating and Classifying the Temporal Shape of Sound in Three Auditory Cortical Fields.
J Neurosci. 2018 Aug 1;38(31):6967-6982. doi: 10.1523/JNEUROSCI.2871-17.2018. Epub 2018 Jun 28.

本文引用的文献

1
Millisecond encoding precision of auditory cortex neurons.
Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16976-81. doi: 10.1073/pnas.1012656107. Epub 2010 Sep 13.
2
Intracellular responses of neurons in the mouse inferior colliculus to sinusoidal amplitude-modulated tones.
J Neurophysiol. 2009 Apr;101(4):2002-16. doi: 10.1152/jn.90966.2008. Epub 2009 Feb 4.
4
The representation of amplitude modulations in the mammalian auditory midbrain.
J Neurophysiol. 2008 Sep;100(3):1602-9. doi: 10.1152/jn.90374.2008. Epub 2008 Jul 9.
5
Temporal precision in the neural code and the timescales of natural vision.
Nature. 2007 Sep 6;449(7158):92-5. doi: 10.1038/nature06105.
6
Adaptation to stimulus contrast and correlations during natural visual stimulation.
Neuron. 2007 Aug 2;55(3):479-91. doi: 10.1016/j.neuron.2007.07.013.
7
Dynamic amplitude coding in the auditory cortex of awake rhesus macaques.
J Neurophysiol. 2007 Sep;98(3):1451-74. doi: 10.1152/jn.01203.2006. Epub 2007 Jul 5.
8
Adaptation reduces spike-count reliability, but not spike-timing precision, of auditory nerve responses.
J Neurosci. 2007 Jun 13;27(24):6461-72. doi: 10.1523/JNEUROSCI.5239-06.2007.
10
Temporal processing and adaptation in the songbird auditory forebrain.
Neuron. 2006 Sep 21;51(6):845-59. doi: 10.1016/j.neuron.2006.08.030.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验