School of Natural Sciences, Linnaeus University, Kalmar SE-391 82, Sweden.
J Nanobiotechnology. 2013 May 3;11:14. doi: 10.1186/1477-3155-11-14.
Introduction of effective point-of-care devices for use in medical diagnostics is part of strategies to combat accelerating health-care costs. Molecular motor driven nanodevices have unique potentials in this regard due to unprecedented level of miniaturization and independence of external pumps. However motor function has been found to be inhibited by body fluids.
We report here that a unique procedure, combining separation steps that rely on antibody-antigen interactions, magnetic forces applied to magnetic nanoparticles (MPs) and the specificity of the actomyosin bond, can circumvent the deleterious effects of body fluids (e.g. blood serum). The procedure encompasses the following steps: (i) capture of analyte molecules from serum by MP-antibody conjugates, (ii) pelleting of MP-antibody-analyte complexes, using a magnetic field, followed by exchange of serum for optimized biological buffer, (iii) mixing of MP-antibody-analyte complexes with actin filaments conjugated with same polyclonal antibodies as the magnetic nanoparticles. This causes complex formation: MP-antibody-analyte-antibody-actin, and magnetic separation is used to enrich the complexes. Finally (iv) the complexes are introduced into a nanodevice for specific binding via actin filaments to surface adsorbed molecular motors (heavy meromyosin). The number of actin filaments bound to the motors in the latter step was significantly increased above the control value if protein analyte (50-60 nM) was present in serum (in step i) suggesting appreciable formation and enrichment of the MP-antibody-analyte-antibody-actin complexes. Furthermore, addition of ATP demonstrated maintained heavy meromyosin driven propulsion of actin filaments showing that the serum induced inhibition was alleviated. Detailed analysis of the procedure i-iv, using fluorescence microscopy and spectroscopy identified main targets for future optimization.
The results demonstrate a promising approach for capturing analytes from serum for subsequent motor driven separation/detection. Indeed, the observed increase in actin filament number, in itself, signals the presence of analyte at clinically relevant nM concentration without the need for further motor driven concentration. Our analysis suggests that exchange of polyclonal for monoclonal antibodies would be a critical improvement, opening for a first clinically useful molecular motor driven lab-on-a-chip device.
引入用于医疗诊断的有效即时检测设备是应对医疗保健成本加速增长的策略的一部分。由于达到了前所未有的微型化水平和对外置泵的独立性,分子马达驱动的纳米器件在这方面具有独特的潜力。然而,已经发现马达功能会受到体液的抑制。
我们在此报告,一种独特的程序,结合了依赖于抗体-抗原相互作用的分离步骤、施加到磁性纳米颗粒 (MPs) 的磁力以及肌动球蛋白键的特异性,可以规避体液(例如血清)的有害影响。该程序包括以下步骤:(i) 通过 MPs-抗体缀合物从血清中捕获分析物分子,(ii) 使用磁场沉淀 MPs-抗体-分析物复合物,然后用优化的生物缓冲液交换血清,(iii) 将 MPs-抗体-分析物复合物与同样与磁性纳米颗粒结合的肌动蛋白丝混合。这导致复合物形成:MP-抗体-分析物-抗体-肌动蛋白,然后使用磁性分离来富集复合物。最后,(iv) 将复合物引入纳米器件中,通过肌动蛋白丝与表面吸附的分子马达(重酶解肌球蛋白)进行特异性结合。如果在血清中存在蛋白质分析物(50-60 nM)(在步骤 i 中),则与电机结合的肌动蛋白丝数量明显增加,表明明显形成和富集了 MPs-抗体-分析物-抗体-肌动蛋白复合物。此外,添加 ATP 表明重酶解肌球蛋白驱动肌动蛋白丝的推进得到维持,表明缓解了血清诱导的抑制。使用荧光显微镜和光谱学对 i-iv 步骤进行详细分析,确定了未来优化的主要目标。
结果表明,从血清中捕获分析物以进行后续马达驱动分离/检测是一种很有前途的方法。事实上,肌动蛋白丝数量的增加本身就表明在临床相关的 nM 浓度下存在分析物,而无需进一步的马达驱动浓缩。我们的分析表明,交换多克隆抗体为单克隆抗体将是一个关键的改进,为第一个临床有用的分子马达驱动的片上实验室设备打开了大门。