Suppr超能文献

癌症基因仓库重新注释用于生物标志物荟萃分析。

Warehousing re-annotated cancer genes for biomarker meta-analysis.

机构信息

CRS4 Bioinformatics, Polaris, Pula (CA), Italy.

出版信息

Comput Methods Programs Biomed. 2013 Jul;111(1):166-80. doi: 10.1016/j.cmpb.2013.03.010. Epub 2013 Apr 29.

Abstract

Translational research in cancer genomics assigns a fundamental role to bioinformatics in support of candidate gene prioritization with regard to both biomarker discovery and target identification for drug development. Efforts in both such directions rely on the existence and constant update of large repositories of gene expression data and omics records obtained from a variety of experiments. Users who interactively interrogate such repositories may have problems in retrieving sample fields that present limited associated information, due for instance to incomplete entries or sometimes unusable files. Cancer-specific data sources present similar problems. Given that source integration usually improves data quality, one of the objectives is keeping the computational complexity sufficiently low to allow an optimal assimilation and mining of all the information. In particular, the scope of integrating intraomics data can be to improve the exploration of gene co-expression landscapes, while the scope of integrating interomics sources can be that of establishing genotype-phenotype associations. Both integrations are relevant to cancer biomarker meta-analysis, as the proposed study demonstrates. Our approach is based on re-annotating cancer-specific data available at the EBI's ArrayExpress repository and building a data warehouse aimed to biomarker discovery and validation studies. Cancer genes are organized by tissue with biomedical and clinical evidences combined to increase reproducibility and consistency of results. For better comparative evaluation, multiple queries have been designed to efficiently address all types of experiments and platforms, and allow for retrieval of sample-related information, such as cell line, disease state and clinical aspects.

摘要

癌症基因组学的转化研究赋予生物信息学在支持候选基因优先级方面的基本作用,无论是在生物标志物发现还是药物开发的目标识别方面。这两个方向的努力都依赖于大型基因表达数据和组学记录存储库的存在和不断更新,这些数据和记录是从各种实验中获得的。交互查询这些存储库的用户可能会遇到检索样本字段的问题,这些字段提供的相关信息有限,例如由于不完整的条目或有时不可用的文件。癌症特异性数据源也存在类似的问题。鉴于源集成通常可以提高数据质量,因此目标之一是将计算复杂性保持在足够低的水平,以允许对所有信息进行最佳吸收和挖掘。特别是,整合组内数据的范围可以是改善基因共表达景观的探索,而整合组间源的范围可以是建立基因型-表型关联。这两种整合都与癌症生物标志物荟萃分析相关,正如所提出的研究所示。我们的方法基于重新注释 EBI 的 ArrayExpress 存储库中可用的癌症特异性数据,并构建一个数据仓库,旨在进行生物标志物发现和验证研究。癌症基因按组织组织排列,结合生物医学和临床证据,以提高结果的可重复性和一致性。为了进行更好的比较评估,已经设计了多个查询来有效地处理所有类型的实验和平台,并允许检索与样本相关的信息,如细胞系、疾病状态和临床方面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验