Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, PR China.
Nanoscale. 2013 Jun 7;5(11):5102-8. doi: 10.1039/c3nr34265d. Epub 2013 May 3.
Porous zinc oxide (ZnO) nanosheet (NS) arrays constructed by connected nanocrystallites were built on weaved metal wire (WMW) via hydrothermal treatment followed by calcination, and used as photoanodes for flexible dye-sensitized solar cells (DSSCs). An overall light-to-electricity conversion efficiency (η) of 2.70% was achieved for the DSSC under 100 mW cm(-2) illumination, and this η was found to be much higher than that of the DSSC with ZnO nanowire (NW) as the photoanode (0.71%). The far superior performance of the DSSC with ZnO-NS is essentially attributed to: (i) the film consisting of nanosheets with interconnected nanocrystallites can allow relatively direct pathways for the transportation of electrons as the nanosheets have a regular structure with the sheets being oriented to the electrode; (ii) the nanocrystallites assembly and porous character of the nanosheets can provide a large surface area for dye adsorption, which is in favor of enhancing the light absorption and the light propagation; (iii) the nanopores embedded in the nanosheet can act as "branch lines" for more efficient electrolyte diffusion into the interstice of the densely packed nanosheets in the array. A further improvement in the efficiency of the DSSC with ZnO-NS was achieved through the atomic layer deposition (ALD) of an ultrathin titanium oxide (TiO2) layer onto the ZnO-NS layer. The larger charge transfer resistance along with the introduction of a TiO2 shell is thought to reduce the surface recombination and thus contribute to the increase in the open circuit voltage (Voc) of the DSCs and higher conversion efficiency (3.09%).
多孔氧化锌 (ZnO) 纳米片 (NS) 阵列由连接的纳米晶体制成,通过水热处理和煅烧构建在编织金属丝 (WMW) 上,并用作柔性染料敏化太阳能电池 (DSSC) 的光阳极。在 100 mW cm(-2) 光照下,DSSC 的整体光电转换效率 (η) 达到 2.70%,这一 η 值明显高于以 ZnO 纳米线 (NW) 为光阳极的 DSSC (0.71%)。具有 ZnO-NS 的 DSSC 的卓越性能主要归因于:(i) 由具有互连纳米晶的纳米片组成的薄膜可以为电子的传输提供相对直接的途径,因为纳米片具有规则的结构,其片层定向于电极;(ii) 纳米晶的组装和纳米片的多孔特性可以为染料吸附提供较大的表面积,有利于增强光吸收和光传播;(iii) 纳米片中嵌入的纳米孔可以作为“分支线”,使电解质更有效地扩散到阵列中密集堆积的纳米片之间的空隙中。通过在 ZnO-NS 层上原子层沉积 (ALD) 一层超薄的氧化钛 (TiO2) 层,进一步提高了具有 ZnO-NS 的 DSSC 的效率。较大的电荷转移电阻以及 TiO2 壳的引入被认为可以减少表面复合,从而有助于提高 DSCs 的开路电压 (Voc) 和更高的转换效率 (3.09%)。