Instituto de Biología Molecular y Celular, Universidad Miguel Hernández , 03202 Elche, Spain.
Biomacromolecules. 2013 Jun 10;14(6):1990-8. doi: 10.1021/bm400348n. Epub 2013 May 20.
The present work explores the potential use of the conjugated cationic polyfluorene {[9,9-bis(6'-N,N,N-trimethylammonium)hexyl]fluorene-phenylene} bromide (HTMA-PFP) as a fluorescent membrane marker. To this end, the interaction of the polyelectrolyte with anionic model membranes has been investigated using different biophysical approaches. High affinity interaction was confirmed through alterations in the fluorescence spectrum of HTMA-PFP and by Förster resonance energy transfer (FRET) analysis. Quenching data indicate that once HTMA-PFP interacts with the membrane, it penetrates in the hydrophobic core embedded in the lipid bilayer where it presents high fluorescence quantum yield and photostability. Leakage experiments and dynamic light scattering (DLS) measurements show that the integrity of the lipid vesicles is maintained after polymer incorporation since no vesicle fusion or decomposition into small fragments is detectable. This conclusion is supported by fluorescence microscopy images, which confirm that polyelectrolyte interacts with the vesicle, labeling the lipid membrane without altering its morphology. Further experiments performed as a function of temperature indicate that the polymer is accommodated in the membrane without inducing significant loss of lipid cooperativity and without altering the packing of lipids within the bilayer. Finally, results show that polyelectrolyte fluorescence is sensitive to the large structural changes taking place in the lipid bilayer at the lipid phase transition. All these results confirm the ability of HTMA-PFP to visualize membrane structures and to monitor membrane processes.
本工作探索了共轭阳离子聚芴 {[9,9-双(6'-N,N,N-三甲基铵)己基]芴-联苯} 溴化物(HTMA-PFP)作为荧光膜标记物的潜在用途。为此,使用不同的生物物理方法研究了聚电解质与阴离子模型膜的相互作用。通过 HTMA-PFP 荧光光谱的变化和Förster 共振能量转移(FRET)分析证实了高亲和力相互作用。猝灭数据表明,一旦 HTMA-PFP 与膜相互作用,它就会穿透嵌入脂质双层的疏水区,在那里它具有高荧光量子产率和光稳定性。泄漏实验和动态光散射(DLS)测量表明,在聚合物掺入后,脂质囊泡的完整性得以维持,因为没有检测到囊泡融合或分解成小片段。荧光显微镜图像支持这一结论,该图像证实聚电解质与囊泡相互作用,标记脂质膜而不改变其形态。进一步作为温度函数进行的实验表明,聚合物在不引起脂质协同性显著损失的情况下容纳在膜中,并且不改变双层内脂质的堆积。最后,结果表明,聚电解质荧光对脂质双层中发生的大结构变化敏感,脂质相转变。所有这些结果都证实了 HTMA-PFP 可视化膜结构和监测膜过程的能力。