Suppr超能文献

股浅动脉近段阻塞、侧支循环与外周动脉疾病的步行能力。

Proximal superficial femoral artery occlusion, collateral vessels, and walking performance in peripheral artery disease.

机构信息

Department of Medicine, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA.

出版信息

JACC Cardiovasc Imaging. 2013 Jun;6(6):687-94. doi: 10.1016/j.jcmg.2012.10.024. Epub 2013 May 4.

Abstract

OBJECTIVES

We studied associations of magnetic resonance imaging (MRI)-measured superficial femoral artery (SFA) occlusions with functional performance, leg symptoms, and collateral vessel number in peripheral artery disease (PAD). We studied associations of collateral vessel number with functional performance in PAD.

BACKGROUND

Associations of MRI-detected SFA occlusion and collateral vessel number with functional performance among individuals with PAD have not been reported.

METHODS

A total of 457 participants with an ankle brachial index (ABI) <1.00 had MRI measurement of the proximal SFA with 12 consecutive 2.5-μm cross-sectional images. An occluded SFA was defined as an SFA in which at least 1 segment was occluded. A nonoccluded SFA was defined as absence of any occluded slices. Collateral vessels were visualized with magnetic resonance angiography. Lower extremity functional performance was measured with the 6-min walk, 4-m walking velocity at usual and fastest pace, and the Short Physical Performance Battery (SPPB) (0 to 12 scale, 12 = best).

RESULTS

Adjusting for age, sex, race, comorbidities, and other confounders, the presence of an SFA occlusion was associated with poorer 6-min walk performance (1,031 vs. 1,169 feet, p = 0.006), slower fast-paced walking velocity (1.15 vs. 1.22 m/s, p = 0.042), and lower SPPB score (9.07 vs. 9.75, p = 0.038) compared with the absence of an SFA occlusion. More numerous collateral vessels were associated with better 6-min walk performance (0 to 3 collaterals-1,064 feet, 4 to 7 collaterals-1,165 feet, ≥8 collaterals-1,246 feet, p trend = 0.007), faster usual-paced walking speed (0 to 3 collaterals-0.84 m/s, 4 to 7 collaterals-0.88 m/s, ≥8 collaterals-0.91 m/s, p trend = 0.029), and faster rapid-paced walking speed (0 to 3 collaterals-1.17 m/s, 4 to 7 collaterals-1.22 m/s, ≥8 collaterals-1.29 m/s, p trend = 0.002), adjusting for age, sex, race, comorbidities, ABI, and other confounders.

CONCLUSIONS

Among PAD participants, MRI-visualized occlusions in the proximal SFA are associated with poorer functional performance, whereas more numerous collaterals are associated with better functional performance. (Magnetic Resonance Imaging to Identify Characteristics of Plaque Build-Up in People With Peripheral Arterial Disease; NCT00520312).

摘要

目的

我们研究了磁共振成像(MRI)测量的股浅动脉(SFA)闭塞与外周动脉疾病(PAD)患者的功能表现、腿部症状和侧支血管数量之间的关联。我们研究了 PAD 中侧支血管数量与功能表现之间的关联。

背景

MRI 检测到的 SFA 闭塞和侧支血管数量与 PAD 患者的功能表现之间的关联尚未有报道。

方法

共有 457 名踝肱指数(ABI)<1.00 的参与者进行了近端 SFA 的 MRI 测量,共进行了 12 次连续的 2.5-μm 横截面图像。闭塞的 SFA 定义为至少有 1 个节段闭塞的 SFA。非闭塞的 SFA 定义为没有任何闭塞切片。通过磁共振血管造影术可视化侧支血管。下肢功能表现通过 6 分钟步行、通常和最快速度的 4 米步行速度以及简短身体表现电池(SPPB)(0 到 12 分制,12 分表示最佳)进行测量。

结果

在调整年龄、性别、种族、合并症和其他混杂因素后,SFA 闭塞的存在与较差的 6 分钟步行表现(1031 英尺与 1169 英尺,p=0.006)、较快的快速步行速度(1.15 米/秒与 1.22 米/秒,p=0.042)和较低的 SPPB 评分(9.07 与 9.75,p=0.038)相关,与 SFA 无闭塞相比。更多的侧支血管与更好的 6 分钟步行表现相关(0 到 3 个侧支血管-1064 英尺,4 到 7 个侧支血管-1165 英尺,≥8 个侧支血管-1246 英尺,p 趋势=0.007),更快的通常步行速度(0 到 3 个侧支血管-0.84 米/秒,4 到 7 个侧支血管-0.88 米/秒,≥8 个侧支血管-0.91 米/秒,p 趋势=0.029)和更快的快速步行速度(0 到 3 个侧支血管-1.17 米/秒,4 到 7 个侧支血管-1.22 米/秒,≥8 个侧支血管-1.29 米/秒,p 趋势=0.002),在调整年龄、性别、种族、合并症、ABI 和其他混杂因素后。

结论

在 PAD 参与者中,MRI 可见的近端 SFA 闭塞与较差的功能表现相关,而更多的侧支血管与更好的功能表现相关。(磁共振成像识别外周动脉疾病患者斑块形成特征;NCT00520312)。

相似文献

1
Proximal superficial femoral artery occlusion, collateral vessels, and walking performance in peripheral artery disease.
JACC Cardiovasc Imaging. 2013 Jun;6(6):687-94. doi: 10.1016/j.jcmg.2012.10.024. Epub 2013 May 4.
3
Clinical correlates of size and number of collateral vessels in peripheral artery disease.
Vasc Med. 2012 Aug;17(4):223-30. doi: 10.1177/1358863X12446213. Epub 2012 Jun 27.
4
Femoral artery plaque characteristics, lower extremity collaterals, and mobility loss in peripheral artery disease.
Vasc Med. 2017 Dec;22(6):473-481. doi: 10.1177/1358863X17729030. Epub 2017 Sep 30.
7
Collateral vessel number, plaque burden, and functional decline in peripheral artery disease.
Vasc Med. 2014 Aug;19(4):281-288. doi: 10.1177/1358863X14540362. Epub 2014 Jul 21.
8
Vitamin D status and functional performance in peripheral artery disease.
Vasc Med. 2012 Oct;17(5):294-302. doi: 10.1177/1358863X12448457. Epub 2012 Jul 19.
9
Plaque Composition in the Proximal Superficial Femoral Artery and Peripheral Artery Disease Events.
JACC Cardiovasc Imaging. 2017 Sep;10(9):1003-1012. doi: 10.1016/j.jcmg.2016.08.012. Epub 2016 Nov 9.
10
The ankle brachial index independently predicts walking velocity and walking endurance in peripheral arterial disease.
J Am Geriatr Soc. 1998 Nov;46(11):1355-62. doi: 10.1111/j.1532-5415.1998.tb06001.x.

引用本文的文献

1
Clinical outcomes of acute limb ischaemia caused by femoropopliteal stent thrombosis.
EuroIntervention. 2024 Sep 16;20(18):e1163-e1172. doi: 10.4244/EIJ-D-24-00016.
4
Mitochondrial Complex Abundance, Mitophagy Proteins, and Physical Performance in People With and Without Peripheral Artery Disease.
J Am Heart Assoc. 2023 Mar 21;12(6):e027088. doi: 10.1161/JAHA.122.027088. Epub 2023 Mar 9.
6
With a Little Help From My Friends: the Role of the Renal Collateral Circulation in Atherosclerotic Renovascular Disease.
Hypertension. 2022 Apr;79(4):717-725. doi: 10.1161/HYPERTENSIONAHA.121.17960. Epub 2022 Feb 9.
7
Accuracy of Acceleration Time of Distal Arteries to Diagnose Severe Peripheral Arterial Disease.
Front Cardiovasc Med. 2022 Jan 20;8:744354. doi: 10.3389/fcvm.2021.744354. eCollection 2021.
9
Satellite Cell Expression of RAGE (Receptor for Advanced Glycation end Products) Is Important for Collateral Vessel Formation.
J Am Heart Assoc. 2021 Nov 2;10(21):e022127. doi: 10.1161/JAHA.120.022127. Epub 2021 Oct 23.

本文引用的文献

1
Clinical correlates of size and number of collateral vessels in peripheral artery disease.
Vasc Med. 2012 Aug;17(4):223-30. doi: 10.1177/1358863X12446213. Epub 2012 Jun 27.
3
Marvels, mysteries, and misconceptions of vascular compensation to peripheral artery occlusion.
Microcirculation. 2010 Jan;17(1):3-20. doi: 10.1111/j.1549-8719.2010.00008.x.
6
Leg ischemia: assessment with MR angiography and spectroscopy.
Radiology. 2005 Mar;234(3):833-41. doi: 10.1148/radiol.2343031440. Epub 2005 Jan 28.
7
Time course of changes in collateral blood flow and isolated vessel size and gene expression after femoral artery occlusion in rats.
Am J Physiol Heart Circ Physiol. 2004 Dec;287(6):H2434-47. doi: 10.1152/ajpheart.00398.2004. Epub 2004 Jul 22.
9
Arteriogenesis in peripheral arterial disease.
Endothelium. 2003;10(4-5):225-32. doi: 10.1080/10623320390246360.
10
Generalized autocalibrating partially parallel acquisitions (GRAPPA).
Magn Reson Med. 2002 Jun;47(6):1202-10. doi: 10.1002/mrm.10171.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验