Suppr超能文献

利用 MODIS EVI 数据集刻画中国植被动态的时空非平稳性。

Characterizing spatiotemporal non-stationarity in vegetation dynamics in China using MODIS EVI dataset.

机构信息

Key Laboratory of Spatial Data Mining and Information Sharing of the Ministry of Education, Spatial Information Research Centre of Fujian Province, Fuzhou University, Science Building, floor 13th, Gongye Road 523, Fuzhou, 350002, Fujian, China,

出版信息

Environ Monit Assess. 2013 Nov;185(11):9019-35. doi: 10.1007/s10661-013-3231-2. Epub 2013 May 7.

Abstract

This paper evaluated the spatiotemporal non-stationarity in the vegetation dynamic based on 1-km resolution 16-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) datasets in China during 2001-2011 through a wavelet transform method. First, it revealed from selected pixels that agricultural crops, natural forests, and meadows were characterized by their distinct intra-annual temporal variation patterns in different climate regions. The amplitude of intra-annual variability generally increased with latitude. Second, parameters calculated using a per-pixel strategy indicated that the natural forests had the strongest variation pattern from seasonal to semiannual scales, and the multiple-cropping croplands typically showed almost equal variances distributed at monthly, seasonal, and semiannual scales. Third, spatiotemporal non-stationarity induced from cloud cover was also evaluated. It revealed that the EVI temporal profiles were significantly distorted with regular summer cloud cover in tropical and subtropical regions. Nevertheless, no significant differences were observed from those statistical parameters related to the interannual and interannual components between the de-clouded and the original MODIS EVI datasets across the whole country. Finally, 12 vegetation zones were proposed based on spatiotemporal variability, as indicated by the magnitude of interannual and intra-annual dynamic components, normalized wavelet variances of detailed components from monthly to semiannual scale, and proportion of cloud cover in summer. This paper provides insightful solutions for addressing spatiotemporal non-stationarity by evaluating the magnitude and frequency of vegetation variability using monthly, seasonal, semiannual to interannual scales across the whole study area.

摘要

本文利用小波变换方法,基于 2001-2011 年分辨率为 1km 的 16 天合成 MODIS 增强型植被指数(EVI)数据集,评估了中国植被动态的时空非平稳性。首先,从选定的像素中揭示,农业作物、天然林和草地在不同气候区具有不同的年内时间变化模式。年内变化幅度一般随纬度增加而增加。其次,使用逐像素策略计算的参数表明,天然林具有最强的季节性到半年尺度的变化模式,而复种耕地通常在月、季和半年尺度上表现出几乎相等的方差分布。第三,还评估了云覆盖引起的时空非平稳性。结果表明,在热带和亚热带地区,夏季云覆盖会导致 EVI 时间曲线显著扭曲。然而,在全国范围内,去云后的 MODIS EVI 数据集与原始数据集之间,与年际和年际分量相关的统计参数没有显著差异。最后,根据年际和年内动态分量的幅度、从月到半年尺度的详细分量的归一化小波方差以及夏季云量的比例,提出了 12 个植被区。本文通过在整个研究区域内使用月、季、半年到年际尺度来评估植被变化的幅度和频率,为解决时空非平稳性提供了有见地的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验