Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
J Biol Chem. 2013 Jun 21;288(25):18612-23. doi: 10.1074/jbc.M112.440859. Epub 2013 May 6.
TANK-binding kinase 1 (TBK1) serves as a key convergence point in multiple innate immune signaling pathways. In response to receptor-mediated pathogen detection, TBK1 phosphorylation promotes production of pro-inflammatory cytokines and type I interferons. Increasingly, TBK1 dysregulation has been linked to autoimmune disorders and cancers, heightening the need to understand the regulatory controls of TBK1 activity. Here, we describe the mechanism by which suppressor of IKKε (SIKE) inhibits TBK1-mediated phosphorylation of interferon regulatory factor 3 (IRF3), which is essential to type I interferon production. Kinetic analyses showed that SIKE not only inhibits IRF3 phosphorylation but is also a high affinity TBK1 substrate. With respect to IRF3 phosphorylation, SIKE functioned as a mixed-type inhibitor (K(i, app) = 350 nM) rather than, given its status as a TBK1 substrate, as a competitive inhibitor. TBK1 phosphorylation of IRF3 and SIKE displayed negative cooperativity. Both substrates shared a similar Km value at low substrate concentrations (∼50 nM) but deviated >8-fold at higher substrate concentrations (IRF3 = 3.5 μM; SIKE = 0.4 μM). TBK1-SIKE interactions were modulated by SIKE phosphorylation, clustered in the C-terminal portion of SIKE (Ser-133, -185, -187, -188, -190, and -198). These sites exhibited striking homology to the phosphorylation motif of IRF3. Mutagenic probing revealed that phosphorylation of Ser-185 controlled TBK1-SIKE interactions. Taken together, our studies demonstrate for the first time that SIKE functions as a TBK1 substrate and inhibits TBK1-mediated IRF3 phosphorylation by forming a high affinity TBK1-SIKE complex. These findings provide key insights into the endogenous control of a critical catalytic hub that is achieved not by direct repression of activity but by redirection of catalysis through substrate affinity.
TANK 结合激酶 1(TBK1)作为多个先天免疫信号通路的关键汇聚点。在受体介导的病原体检测中,TBK1 磷酸化促进促炎细胞因子和 I 型干扰素的产生。越来越多的证据表明,TBK1 失调与自身免疫性疾病和癌症有关,因此需要了解 TBK1 活性的调节控制。在这里,我们描述了抑制 IKKε 抑制剂(SIKE)抑制 TBK1 介导的干扰素调节因子 3(IRF3)磷酸化的机制,这对于 I 型干扰素的产生是必不可少的。动力学分析表明,SIKE 不仅抑制 IRF3 的磷酸化,而且还是 TBK1 的高亲和力底物。就 IRF3 的磷酸化而言,SIKE 作为混合抑制剂(K(i,app) = 350 nM)起作用,而不是作为 TBK1 的底物作为竞争性抑制剂起作用。TBK1 对 IRF3 的磷酸化和 SIKE 表现出负协同性。在低底物浓度(约 50 nM)下,两个底物的 Km 值相似(IRF3 = 3.5 μM;SIKE = 0.4 μM),但在较高的底物浓度下相差 8 倍以上。TBK1-SIKE 相互作用受 SIKE 磷酸化调节,集中在 SIKE 的 C 末端部分(Ser-133、-185、-187、-188、-190 和-198)。这些位点与 IRF3 的磷酸化基序表现出惊人的同源性。诱变探测表明,Ser-185 的磷酸化控制着 TBK1-SIKE 相互作用。总之,我们的研究首次表明,SIKE 作为 TBK1 的底物,通过形成高亲和力的 TBK1-SIKE 复合物来抑制 TBK1 介导的 IRF3 磷酸化。这些发现为关键催化中心的内源性控制提供了重要的见解,这种控制不是通过直接抑制活性,而是通过改变底物亲和力来实现催化的重新定向。