Suppr超能文献

从子宫抽吸物进行子宫内膜癌的分子诊断。

Molecular diagnosis of endometrial cancer from uterine aspirates.

机构信息

Oryzon Genomics, Cornellà de Llobregat, Barcelona, Spain.

出版信息

Int J Cancer. 2013 Nov 15;133(10):2383-91. doi: 10.1002/ijc.28243. Epub 2013 Jun 21.

Abstract

Rapid and reliable diagnosis of endometrial cancer (EC) in uterine aspirates is highly desirable. Current sensitivity and failure rate of histological diagnosis limit the success of this method and subsequent hysteroscopy is often necessary. Using quantitative reverse transcriptase-polymerase chain reaction on RNA from uterine aspirates samples, we measured the expression level of 20 previously identified genes involved in EC pathology, created five algorithms based on combinations of five genes and evaluated their ability to diagnose EC. The algorithms were tested in a prospective, double-blind, multicenter study. We enlisted 514 patients who presented with abnormal uterine bleeding. EC was diagnosed in 60 of the 514 patients (12%). Molecular analysis was performed on the remnants of aspirates and results were compared to the final histological diagnoses obtained through biopsies acquired by aspiration or guided by hysteroscopy, or from the specimens resected by hysterectomy. Algorithm 5 was the best performing molecular diagnostic classifier in the case-control and validation study. The molecular test had a sensitivity of 81%, specificity of 96%, positive predictive value (PPV) of 75% and negative predictive value (NPV) of 97%. A combination of the molecular and histological diagnosis had a sensitivity of 91%, specificity of 97%, PPV of 79% and NPV of 99% and the cases that could be diagnosed on uterine aspirate rose from 76 to 93% when combined with the molecular test. Incorporation of the molecular diagnosis increases the reliability of a negative diagnosis, reduces the need for hysteroscopies and helps to identify additional cases.

摘要

快速、可靠地诊断子宫内膜癌(EC)在子宫抽吸物中是非常理想的。目前组织学诊断的敏感性和失败率限制了这种方法的成功,随后通常需要进行宫腔镜检查。我们使用来自子宫抽吸物样本的 RNA 进行定量逆转录聚合酶链反应,测量了 20 个先前确定的与 EC 病理学相关的基因的表达水平,创建了基于 5 个基因组合的 5 个算法,并评估了它们诊断 EC 的能力。该算法在一项前瞻性、双盲、多中心研究中进行了测试。我们招募了 514 名因异常子宫出血就诊的患者。在 514 名患者中,有 60 名(12%)被诊断为 EC。对抽吸物的残余物进行分子分析,并将结果与通过抽吸或宫腔镜引导获得的活检或通过子宫切除术切除的标本的最终组织学诊断进行比较。在病例对照和验证研究中,算法 5 是表现最佳的分子诊断分类器。分子测试的敏感性为 81%,特异性为 96%,阳性预测值(PPV)为 75%,阴性预测值(NPV)为 97%。分子和组织学诊断的组合具有 91%的敏感性、97%的特异性、79%的阳性预测值(PPV)和 99%的阴性预测值(NPV),当与分子测试结合使用时,可诊断的病例数从 76%增加到 93%。分子诊断的纳入提高了阴性诊断的可靠性,减少了宫腔镜检查的需要,并有助于识别更多的病例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验