Suppr超能文献

轮廓跟随控制中的预测机制。

Predictive mechanisms in the control of contour following.

机构信息

Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA.

出版信息

Exp Brain Res. 2013 Jun;227(4):535-46. doi: 10.1007/s00221-013-3529-x. Epub 2013 May 7.

Abstract

In haptic exploration, when running a fingertip along a surface, the control system may attempt to anticipate upcoming changes in curvature in order to maintain a consistent level of contact force. Such predictive mechanisms are well known in the visual system, but have yet to be studied in the somatosensory system. Thus, the present experiment was designed to reveal human capabilities for different types of haptic prediction. A robot arm with a large 3D workspace was attached to the index fingertip and was programmed to produce virtual surfaces with curvatures that varied within and across trials. With eyes closed, subjects moved the fingertip around elliptical hoops with flattened regions or Limaçon shapes, where the curvature varied continuously. Subjects anticipated the corner of the flattened region rather poorly, but for the Limaçon shapes, they varied finger speed with upcoming curvature according to the two-thirds power law. Furthermore, although the Limaçon shapes were randomly presented in various 3D orientations, modulation of contact force also indicated good anticipation of upcoming changes in curvature. The results demonstrate that it is difficult to haptically anticipate the spatial location of an abrupt change in curvature, but smooth changes in curvature may be facilitated by anticipatory predictions.

摘要

在触觉探索中,当指尖沿着表面移动时,控制系统可能会试图预测曲率的即将变化,以保持一致的接触力水平。这种预测机制在视觉系统中是众所周知的,但在体感系统中尚未得到研究。因此,本实验旨在揭示人类在不同类型的触觉预测方面的能力。一个具有大 3D 工作空间的机械臂附着在食指指尖上,并编程产生曲率在试验内和试验间变化的虚拟表面。受试者闭上眼睛,用指尖围绕具有平坦区域或 Limacon 形状的椭圆形环移动,其中曲率连续变化。受试者对平坦区域的拐角预测得很差,但对于 Limacon 形状,他们根据三分之二的幂律根据即将到来的曲率变化调整手指速度。此外,尽管 Limacon 形状以各种 3D 方向随机呈现,但接触力的调制也表明对曲率即将发生的变化有很好的预测。结果表明,难以通过触觉预测曲率的突然变化的空间位置,但可以通过预测来促进曲率的平滑变化。

相似文献

1
Predictive mechanisms in the control of contour following.
Exp Brain Res. 2013 Jun;227(4):535-46. doi: 10.1007/s00221-013-3529-x. Epub 2013 May 7.
2
Bias and sensitivity in the haptic perception of geometry.
Exp Brain Res. 2003 May;150(1):95-108. doi: 10.1007/s00221-003-1402-z. Epub 2003 Mar 8.
3
Two hands, one perception: how bimanual haptic information is combined by the brain.
J Neurophysiol. 2012 Jan;107(2):544-50. doi: 10.1152/jn.00756.2010. Epub 2011 Oct 26.
5
Somatosensory comparison during haptic tracing.
Cereb Cortex. 2011 Feb;21(2):425-34. doi: 10.1093/cercor/bhq110. Epub 2010 Jun 11.
6
Haptic synthesis of shapes and sequences.
J Neurophysiol. 2004 Apr;91(4):1808-21. doi: 10.1152/jn.00998.2003. Epub 2003 Nov 26.
7
An advantage for smooth compared with angular contours in the speed of processing shape.
J Exp Psychol Hum Percept Perform. 2019 Oct;45(10):1304-1318. doi: 10.1037/xhp0000669. Epub 2019 Jul 8.
10
Trajectory of contact region on the fingerpad gives the illusion of haptic shape.
Exp Brain Res. 2005 Jul;164(3):387-94. doi: 10.1007/s00221-005-2262-5. Epub 2005 May 10.

引用本文的文献

1
Haptic Perception in Extreme Obesity: qEEG Study Focused on Predictive Coding and Body Schema.
Brain Sci. 2020 Nov 25;10(12):908. doi: 10.3390/brainsci10120908.
2
The speed-curvature power law of movements: a reappraisal.
Exp Brain Res. 2018 Jan;236(1):69-82. doi: 10.1007/s00221-017-5108-z. Epub 2017 Oct 25.
3
Whisking mechanics and active sensing.
Curr Opin Neurobiol. 2016 Oct;40:178-188. doi: 10.1016/j.conb.2016.08.001. Epub 2016 Sep 13.
4
Drawing ellipses in water: evidence for dynamic constraints in the relation between velocity and path curvature.
Exp Brain Res. 2016 Jun;234(6):1649-57. doi: 10.1007/s00221-016-4569-9. Epub 2016 Feb 2.
5
Hand interception of occluded motion in humans: a test of model-based vs. on-line control.
J Neurophysiol. 2015 Sep;114(3):1577-92. doi: 10.1152/jn.00475.2015. Epub 2015 Jul 1.
6
Familiar trajectories facilitate the interpretation of physical forces when intercepting a moving target.
Exp Brain Res. 2014 Dec;232(12):3803-11. doi: 10.1007/s00221-014-4050-6. Epub 2014 Aug 21.

本文引用的文献

1
Gaze is driven by an internal goal trajectory in a visuomotor task.
Eur J Neurosci. 2013 Apr;37(7):1112-9. doi: 10.1111/ejn.12107. Epub 2012 Dec 28.
3
The proprioceptive map of the arm is systematic and stable, but idiosyncratic.
PLoS One. 2011;6(11):e25214. doi: 10.1371/journal.pone.0025214. Epub 2011 Nov 16.
4
Motor-sensory convergence in object localization: a comparative study in rats and humans.
Philos Trans R Soc Lond B Biol Sci. 2011 Nov 12;366(1581):3070-6. doi: 10.1098/rstb.2011.0157.
5
Active touch sensing.
Philos Trans R Soc Lond B Biol Sci. 2011 Nov 12;366(1581):2989-95. doi: 10.1098/rstb.2011.0167.
6
Incorporating prediction in models for two-dimensional smooth pursuit.
PLoS One. 2010 Sep 3;5(9):e12574. doi: 10.1371/journal.pone.0012574.
7
Somatosensory comparison during haptic tracing.
Cereb Cortex. 2011 Feb;21(2):425-34. doi: 10.1093/cercor/bhq110. Epub 2010 Jun 11.
8
Factors Influencing Haptic Perception of Complex Shapes.
IEEE Trans Haptics. 2008;1(1):19-26. doi: 10.1109/ToH.2008.4.
9
Cognitive processes involved in smooth pursuit eye movements.
Brain Cogn. 2008 Dec;68(3):309-26. doi: 10.1016/j.bandc.2008.08.020. Epub 2008 Oct 10.
10
Predicting curvilinear target motion through an occlusion.
Exp Brain Res. 2007 Mar;178(1):99-114. doi: 10.1007/s00221-006-0717-y. Epub 2006 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验