Suppr超能文献

从高斯测量中恢复矩阵的相转变与矩阵去噪的最小均方误差相匹配。

The phase transition of matrix recovery from Gaussian measurements matches the minimax MSE of matrix denoising.

机构信息

Departments of Statistics and Electrical Engineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 May 21;110(21):8405-10. doi: 10.1073/pnas.1306110110. Epub 2013 May 6.

Abstract

Let X(0) be an unknown M by N matrix. In matrix recovery, one takes n < MN linear measurements y(1),…,y(n) of X(0), where y(i) = Tr(A(T)iX(0)) and each A(i) is an M by N matrix. A popular approach for matrix recovery is nuclear norm minimization (NNM): solving the convex optimization problem min ||X||subject to y(i) =Tr(A(T)(i)X) for all 1 ≤ i ≤ n, where || · ||* denotes the nuclear norm, namely, the sum of singular values. Empirical work reveals a phase transition curve, stated in terms of the undersampling fraction δ(n,M,N) = n/(MN), rank fraction ρ=rank(X0)/min {M,N}, and aspect ratio β=M/N. Specifically when the measurement matrices Ai have independent standard Gaussian random entries, a curve δ*(ρ) = δ*(ρ;β) exists such that, if δ > δ(ρ), NNM typically succeeds for large M,N, whereas if δ < δ*(ρ), it typically fails. An apparently quite different problem is matrix denoising in Gaussian noise, in which an unknown M by N matrix X(0) is to be estimated based on direct noisy measurements Y =X(0) + Z, where the matrix Z has independent and identically distributed Gaussian entries. A popular matrix denoising scheme solves the unconstrained optimization problem min|| Y-X||(2)(F)/2+λ||X||. When optimally tuned, this scheme achieves the asymptotic minimax mean-squared error M(ρ;β) = lim(M,N → ∞)inf(λ)sup(rank(X) ≤ ρ · M)MSE(X,X(λ)), where M/N → . We report extensive experiments showing that the phase transition δ(ρ) in the first problem, matrix recovery from Gaussian measurements, coincides with the minimax risk curve M(ρ)=M(ρ;β) in the second problem, matrix denoising in Gaussian noise: δ*(ρ)=M(ρ), for any rank fraction 0 < ρ < 1 (at each common aspect ratio β). Our experiments considered matrices belonging to two constraint classes: real M by N matrices, of various ranks and aspect ratios, and real symmetric positive-semidefinite N by N matrices, of various ranks.

摘要

令$X(0)$为一个未知的$M\times N$矩阵。在矩阵恢复中,我们取$n<MN$个线性测量值$y(1),\cdots,y(n)$的$X(0)$,其中$y(i)=\operatorname{Tr}(A^\top(i)X(0))$,且每个$A(i)$都是一个$M\times N$矩阵。矩阵恢复的一种流行方法是核范数最小化(NNM):求解凸优化问题

$$

\min\limits_{X}|X|_*\

s.t.\ y(i)=\operatorname{Tr}(A^\top(i)X)\quad\forall1\leq i\leq n

$$

其中$| \cdot |_$表示核范数,即奇异值的和。经验工作揭示了一条相转变曲线,以欠采样分数$\delta(n,M,N)=n/(MN)$、秩分数$\rho=\operatorname{rank}(X_0)/\min{M,N}$和纵横比$\beta=M/N$来表示。具体来说,当测量矩阵$A_i$具有独立的标准高斯随机分量时,存在一条曲线$\delta^(ρ)=\delta^(ρ;β)$,使得如果$\delta>\delta^(ρ)$,则 NNM 通常在$M,N$很大时成功,而如果$\delta<\delta^*(ρ)$,则通常失败。一个明显不同的问题是在高斯噪声中的矩阵去噪,其中一个未知的$M\times N$矩阵$X(0)$要基于直接的噪声测量值$Y=X(0)+Z$来估计,其中矩阵$Z$具有独立同分布的高斯分量。一种流行的矩阵去噪方案是求解无约束优化问题

$$

\min\limits_{X}|Y-X|2^2/2+\lambda|X|*\

$$

当最优调谐时,该方案实现了渐近最小均方误差风险曲线$M(ρ;β)=\lim\limits_{(M,N)\to\infty}\inf(λ)\sup(rank(X)\leq ρ\cdot M)\text{MSE}(X,X(λ))$,其中$M/N\to0$。我们报告了广泛的实验结果,表明第一个问题中高斯测量值的矩阵恢复的相转变曲线$\delta^(ρ)$与第二个问题中高斯噪声中的矩阵去噪的最小风险曲线$M(ρ)=M(ρ;β)$一致:$\delta^(ρ)=M(ρ)$,对于任何$0<ρ<1$的秩分数(在每个共同纵横比$\beta$下)。我们的实验考虑了属于两个约束类别的矩阵:各种秩和纵横比的实$M\times N$矩阵,以及各种秩的实对称正定半正定$N\times N$矩阵。

相似文献

3
Near-optimal matrix recovery from random linear measurements.随机线性测量的近最优矩阵恢复。
Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7200-7205. doi: 10.1073/pnas.1705490115. Epub 2018 Jun 25.
5
Norms of structured random matrices.结构化随机矩阵的范数
Math Ann. 2024;388(4):3463-3527. doi: 10.1007/s00208-023-02599-6. Epub 2023 Apr 9.
8
Robust Low-Tubal-Rank Tensor Recovery From Binary Measurements.基于二元测量的稳健低秩张量恢复
IEEE Trans Pattern Anal Mach Intell. 2022 Aug;44(8):4355-4373. doi: 10.1109/TPAMI.2021.3063527. Epub 2022 Jul 1.
9
Nonconvex Nonsmooth Low Rank Minimization via Iteratively Reweighted Nuclear Norm.基于迭代加权核范数的非凸非光滑低秩最小化
IEEE Trans Image Process. 2016 Feb;25(2):829-39. doi: 10.1109/TIP.2015.2511584. Epub 2015 Dec 22.

引用本文的文献

1
Single-Pixel Imaging with Origami Pattern Construction.折纸结构的单像素成像。
Sensors (Basel). 2019 Nov 23;19(23):5135. doi: 10.3390/s19235135.
2
Near-optimal matrix recovery from random linear measurements.随机线性测量的近最优矩阵恢复。
Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7200-7205. doi: 10.1073/pnas.1705490115. Epub 2018 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验