Suppr超能文献

两种大型丝氨酸重组酶在动员耐甲氧西林的 SCCmec 盒中的作用。

Roles of two large serine recombinases in mobilizing the methicillin-resistance cassette SCCmec.

机构信息

Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.

出版信息

Mol Microbiol. 2013 Jun;88(6):1218-29. doi: 10.1111/mmi.12253. Epub 2013 May 23.

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) emerged via acquisition of a mobile element, staphylococcal cassette chromosome mec (SCCmec). Integration and excision of SCCmec is mediated by an unusual site-specific recombination system. Most variants of SCCmec encode two recombinases, CcrA and CcrB, that belong to the large serine family. Since CcrA and CcrB are always found together, we sought to address their specific roles. We show here that CcrA and CcrB can carry out both excisive and integrative recombination in Escherichia coli in the absence of any host-specific or SCCmec-encoded cofactors. CcrA and CcrB are promiscuous in their substrate choice: they act on many non-canonical pairs of recombination sites in addition to the canonical ones, which may explain tandem insertions into the SCCmec attachment site. Moreover, CcrB is always required, but CcrA is only required if one of the four half-sites is present. Recombinational activity correlates with DNA binding: CcrA recognizes only that half-site, which overlaps a conserved coding frame on the host chromosome. Therefore, we propose that CcrA serves as a specificity factor that emerged through modular evolution to enable recognition of a bacterial recombination site that is not an inverted repeat.

摘要

耐甲氧西林金黄色葡萄球菌(MRSA)通过获得移动元件——葡萄球菌盒式染色体 mec(SCCmec)而出现。SCCmec 的整合和切除由一个不寻常的位点特异性重组系统介导。SCCmec 的大多数变体编码两个重组酶,CcrA 和 CcrB,它们属于大丝氨酸家族。由于 CcrA 和 CcrB 总是一起发现,我们试图确定它们的特定作用。我们在这里表明,CcrA 和 CcrB 可以在没有任何宿主特异性或 SCCmec 编码辅助因子的情况下,在大肠杆菌中进行切除和整合重组。CcrA 和 CcrB 在其底物选择上是混杂的:它们除了经典的配对之外,还作用于许多非典型的重组位点,这可能解释了 SCCmec 附着位点的串联插入。此外,总是需要 CcrB,但如果存在四个半位点中的一个,则只需要 CcrA。重组活性与 DNA 结合相关:CcrA 仅识别与宿主染色体上的保守编码框重叠的那个半位点。因此,我们提出 CcrA 作为一个特异性因子出现,通过模块进化来识别不是反向重复的细菌重组位点。

相似文献

1
Roles of two large serine recombinases in mobilizing the methicillin-resistance cassette SCCmec.
Mol Microbiol. 2013 Jun;88(6):1218-29. doi: 10.1111/mmi.12253. Epub 2013 May 23.
4
Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC.
Antimicrob Agents Chemother. 2004 Jul;48(7):2637-51. doi: 10.1128/AAC.48.7.2637-2651.2004.
5
Characterization of a new SCCmec element in Staphylococcus cohnii.
PLoS One. 2010 Nov 17;5(11):e14016. doi: 10.1371/journal.pone.0014016.
7
High frequency and diversity of cassette chromosome recombinases (ccr) in methicillin-susceptible Staphylococcus sciuri.
J Antimicrob Chemother. 2014 Jun;69(6):1461-9. doi: 10.1093/jac/dku028. Epub 2014 Feb 16.
8
Modulation of ccrAB Expression and SCCmec Excision by an Inverted Repeat Element and SarS in Methicillin-Resistant Staphylococcus aureus.
Antimicrob Agents Chemother. 2015 Oct;59(10):6223-32. doi: 10.1128/AAC.01041-15. Epub 2015 Jul 27.
9
Shared reservoir of ccrB gene sequences between coagulase-negative staphylococci and methicillin-resistant Staphylococcus aureus.
J Antimicrob Chemother. 2013 Aug;68(8):1707-13. doi: 10.1093/jac/dkt121. Epub 2013 Apr 18.
10
Novel mobile variants of staphylococcal cassette chromosome mec in Staphylococcus aureus.
Antimicrob Agents Chemother. 2006 Jun;50(6):2072-8. doi: 10.1128/AAC.01539-05.

引用本文的文献

2
Large serine integrases utilise scavenged phage proteins as directionality cofactors.
Nucleic Acids Res. 2025 Jan 24;53(3). doi: 10.1093/nar/gkaf050.
3
Tandem mobilization of anti-phage defenses alongside SCCmec elements in staphylococci.
Nat Commun. 2024 Oct 12;15(1):8820. doi: 10.1038/s41467-024-53146-z.
7
Mobile genetic element-encoded putative DNA primases composed of A-family polymerase-SSB pairs.
Front Mol Biosci. 2023 Mar 16;10:1113960. doi: 10.3389/fmolb.2023.1113960. eCollection 2023.
8
Antimicrobial resistance in methicillin-resistant staphylococcus aureus.
Saudi J Biol Sci. 2023 Apr;30(4):103604. doi: 10.1016/j.sjbs.2023.103604. Epub 2023 Feb 28.

本文引用的文献

4
Protein-protein interactions: analysis of a false positive GST pulldown result.
Proteins. 2011 Aug;79(8):2365-71. doi: 10.1002/prot.23068. Epub 2011 Jun 2.
5
A phage protein that binds φC31 integrase to switch its directionality.
Mol Microbiol. 2011 Jun;80(6):1450-63. doi: 10.1111/j.1365-2958.2011.07696.x. Epub 2011 May 25.
6
7
Characterization of a new SCCmec element in Staphylococcus cohnii.
PLoS One. 2010 Nov 17;5(11):e14016. doi: 10.1371/journal.pone.0014016.
8
Improved isolation of proteins tagged with glutathione S-transferase.
Protein Expr Purif. 2011 Feb;75(2):161-4. doi: 10.1016/j.pep.2010.09.006. Epub 2010 Sep 16.
9
Specificity and kinetics of 23S rRNA modification enzymes RlmH and RluD.
RNA. 2010 Nov;16(11):2075-84. doi: 10.1261/rna.2234310. Epub 2010 Sep 3.
10
The phage-related chromosomal islands of Gram-positive bacteria.
Nat Rev Microbiol. 2010 Aug;8(8):541-51. doi: 10.1038/nrmicro2393.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验