Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.
Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA.
J Bacteriol. 2021 Jul 22;203(16):e0070320. doi: 10.1128/JB.00703-20.
Bacteriophage serine integrases catalyze highly specific recombination reactions between defined DNA segments called sites. These reactions are reversible depending upon the presence of a second phage-encoded directionality factor. The bipartite C-terminal DNA-binding region of integrases includes a recombinase domain (RD) connected to a zinc-binding domain (ZD), which contains a long flexible coiled-coil (CC) motif that extends away from the bound DNA. We directly show that the identities of the phage A118 integrase sites are specified by the DNA spacing between the RD and ZD DNA recognition determinants, which in turn directs the relative trajectories of the CC motifs on each subunit of the -bound integrase dimer. Recombination between compatible dimer-bound sites requires minimal-length CC motifs and 14 residues surrounding the tip where the pairing of CC motifs between synapsing dimers occurs. Our alanine-scanning data suggest that molecular interactions between CC motif tips may differ in integrative ( × ) and excisive ( × ) recombination reactions. We identify mutations in 5 residues within the integrase oligomerization helix that control the remodeling of dimers into tetramers during synaptic complex formation. Whereas most of these gain-of-function mutants still require the CC motifs for synapsis, one mutant efficiently, but indiscriminately, forms synaptic complexes without the CC motifs. However, the CC motifs are still required for recombination, suggesting a function for the CC motifs after the initial assembly of the integrase synaptic tetramer. The robust and exquisitely regulated site-specific recombination reactions promoted by serine integrases are integral to the life cycle of temperate bacteriophage and, in the case of the A118 prophage, are an important virulence factor of Listeria monocytogenes. The properties of these recombinases have led to their repurposing into tools for genetic engineering and synthetic biology. In this report, we identify determinants regulating synaptic complex formation between correct DNA sites, including the DNA architecture responsible for specifying the identity of recombination sites, features of the unique coiled-coil structure on the integrase that are required to initiate synapsis, and amino acid residues on the integrase oligomerization helix that control the remodeling of synapsing dimers into a tetramer active for DNA strand exchange.
噬菌体丝氨酸整合酶催化特定的 DNA 片段之间的重组反应,这些片段被称为整合酶识别位点。这些反应是可逆的,这取决于第二个噬菌体编码的定向因子的存在。整合酶的双组分 C 端 DNA 结合区包含一个重组酶结构域(RD)和一个锌指结构域(ZD),ZD 包含一个长的、灵活的卷曲螺旋(CC)结构域,它从结合的 DNA 上延伸出来。我们直接证明,噬菌体 A118 整合酶识别位点的身份是由 RD 和 ZD DNA 识别决定因子之间的 DNA 间隔决定的,这反过来又决定了结合的整合酶二聚体上 CC 结构域的相对轨迹。相容的二聚体结合的整合酶识别位点之间的重组需要最小长度的 CC 结构域和围绕 CC 结构域之间配对发生的尖端的 14 个残基。我们的丙氨酸扫描数据表明,在整合(×)和切除(×)重组反应中,CC 结构域尖端之间的分子相互作用可能不同。我们鉴定了整合酶寡聚化螺旋中的 5 个残基突变,这些突变控制着二聚体在形成突触复合物过程中的四聚体重塑。虽然大多数功能获得性突变体仍然需要 CC 结构域来进行联会,但有一种突变体能够有效地、但不加区别地形成没有 CC 结构域的突触复合物。然而,CC 结构域仍然是重组所必需的,这表明在整合酶突触四聚体的初始组装之后,CC 结构域仍然具有功能。丝氨酸整合酶促进的稳健而精确调控的位点特异性重组反应是温和噬菌体生命周期的重要组成部分,在 A118 原噬菌体的情况下,它是李斯特菌单核细胞增生李斯特菌的一个重要毒力因子。这些重组酶的特性导致它们被重新用于基因工程和合成生物学工具。在本报告中,我们确定了调节正确 DNA 位点之间突触复合物形成的决定因素,包括负责指定重组酶识别位点身份的 DNA 结构,整合酶独特的卷曲螺旋结构上启动联会所需的特征,以及控制联会二聚体重塑为用于 DNA 链交换的四聚体的整合酶寡聚化螺旋上的氨基酸残基。