Suppr超能文献

使用钴-60 远距离治疗机进行全身照射的快速蒙特卡罗模拟。

Fast Monte Carlo simulation for total body irradiation using a (60)Co teletherapy unit.

机构信息

Department of Radiation Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA.

出版信息

J Appl Clin Med Phys. 2013 May 6;14(3):4214. doi: 10.1120/jacmp.v14i3.4214.

Abstract

Our institution delivers TBI using a modified Theratron 780 60Co unit. Due to limitations of our treatment planning system in calculating dose for this treatment, we have developed a fast Monte Carlo code to calculate dose distributions within the patient. The algorithm is written in C and uses voxel density information from CT images to calculate dose in heterogeneous media. To test the algorithm, film-based dose measurements were made separately in a simple water phantom with a high-density insert and a RANDO phantom and then compared to doses calculated by the Monte Carlo algorithm. In addition, a separate simulation in GEANT4 was run for the RANDO phantom and compared to both film and the in-house simulation. All results were analyzed using RIT113 film analysis software. Simulations in the water phantom accurately predict the depth of maximum dose in the phantom at 0.5 cm. The measured PDD along the central axis of the beam closely matches the PDD generated from the Monte Carlo code, deviating on average by only 3% along the depth of the water phantom. Dose measured at planes inside the high-density insert had a mean difference of 4.9% on cross-profile measurement. In the RANDO phantom, gamma pass rates vary between 91% and 99% at 3 mm, 3%, and were >99% at 5 mm, 5% for the four film planes measured. Profiles taken across the film and both simulations resulted in mean relative differences of < 2% for all profiles in each slice measured. The Monte Carlo algorithm presented here is potentially a viable method for calculating dose distributions delivered in TBI treatments at our center. While not yet refined enough to be the primary method of treatment planning, the algorithm at its current resolution determines the dose distribution for one patient within a few hours, and provides clinically useful information in planning TBI. With appropriate optimization, the Monte Carlo method presented here could potentially be implemented as a first-line treatment planning option for 60Co TBI.

摘要

我们机构使用改良的 Theratron 780 60Co 单位提供 TBI。由于我们的治疗计划系统在计算这种治疗的剂量方面存在限制,因此我们开发了一种快速蒙特卡罗代码来计算患者体内的剂量分布。该算法用 C 语言编写,使用 CT 图像中的体素密度信息来计算不均匀介质中的剂量。为了测试该算法,我们分别在一个带有高密度插件的简单水模体和一个 RANDO 模体中进行了基于胶片的剂量测量,并将其与蒙特卡罗算法计算的剂量进行了比较。此外,我们还在 GEANT4 中为 RANDO 模体单独进行了模拟,并与胶片和内部模拟进行了比较。所有结果均使用 RIT113 胶片分析软件进行了分析。水模体中的模拟准确地预测了模体中 0.5cm 处最大剂量的深度。沿光束中心轴测量的 PDD 与蒙特卡罗代码生成的 PDD 非常吻合,平均偏差仅为水模体深度的 3%。在高密度插件内部平面测量的剂量平均差异为 4.9%。在 RANDO 模体中,在 3mm、3%和 5mm、5%的条件下,四个胶片平面的伽马通过率分别在 91%到 99%之间。在四个测量的胶片平面上,穿过胶片和两个模拟的剖面都得到了所有剖面的平均相对差异小于 2%。这里提出的蒙特卡罗算法可能是我们中心 TBI 治疗中计算剂量分布的一种可行方法。虽然它还不够完善,无法成为主要的治疗计划方法,但该算法在其当前分辨率下,可以在几个小时内为一个患者确定剂量分布,并在 TBI 计划中提供有用的临床信息。通过适当的优化,这里提出的蒙特卡罗方法有可能作为 60Co TBI 的一线治疗计划选择得到实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c2d/5714420/cdeb260b24d1/ACM2-14-133-g001.jpg

相似文献

1
Fast Monte Carlo simulation for total body irradiation using a (60)Co teletherapy unit.
J Appl Clin Med Phys. 2013 May 6;14(3):4214. doi: 10.1120/jacmp.v14i3.4214.
2
Commissioning of a dedicated commercial Co-60 total body irradiation unit.
J Appl Clin Med Phys. 2018 May;19(3):131-141. doi: 10.1002/acm2.12309. Epub 2018 Mar 11.
4
Patient-specific compensation for Co-60 TBI treatments based on Monte Carlo design: A feasibility study.
Phys Med. 2016 Jan;32(1):67-75. doi: 10.1016/j.ejmp.2015.09.012. Epub 2015 Oct 20.
5
Monte carlo electron source model validation for an Elekta Precise linac.
Med Phys. 2011 May;38(5):2366-73. doi: 10.1118/1.3570579.
7
Experimental Validation of Monte Carlo Simulations Based on a Virtual Source Model for TomoTherapy in a RANDO Phantom.
Technol Cancer Res Treat. 2016 Dec;15(6):796-804. doi: 10.1177/1533034615605007. Epub 2015 Sep 15.
10
Validation of a Monte Carlo model for multi leaf collimator based electron delivery.
Med Phys. 2020 Aug;47(8):3586-3599. doi: 10.1002/mp.14194. Epub 2020 May 19.

引用本文的文献

1
Total body irradiation delivered using a dedicated Co-60 TBI unit: Evaluation of dosimetric uniformity and dose verification.
J Appl Clin Med Phys. 2024 Feb;25(2):e14188. doi: 10.1002/acm2.14188. Epub 2023 Nov 1.

本文引用的文献

1
GMC: a GPU implementation of a Monte Carlo dose calculation based on Geant4.
Phys Med Biol. 2012 Mar 7;57(5):1217-29. doi: 10.1088/0031-9155/57/5/1217. Epub 2012 Feb 14.
2
Clinical implementation of a GPU-based simplified Monte Carlo method for a treatment planning system of proton beam therapy.
Phys Med Biol. 2011 Nov 21;56(22):N287-94. doi: 10.1088/0031-9155/56/22/N03. Epub 2011 Oct 28.
7
Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC.
Phys Med Biol. 2000 Aug;45(8):2163-83. doi: 10.1088/0031-9155/45/8/308.
9
Experimental investigation of a fast Monte Carlo photon beam dose calculation algorithm.
Phys Med Biol. 1999 Dec;44(12):3039-54. doi: 10.1088/0031-9155/44/12/313.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验