Suppr超能文献

应用支持向量机对恶性疟原虫葡萄糖-6-磷酸脱氢酶抑制剂进行分类。

Classification of Plasmodium falciparum glucose-6-phosphate dehydrogenase inhibitors by support vector machine.

机构信息

State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, P.O. Box 53, Beijing, 100029, China.

出版信息

Mol Divers. 2013 Aug;17(3):489-97. doi: 10.1007/s11030-013-9447-9. Epub 2013 May 9.

Abstract

Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD) has been considered as a potential target for severe forms of anti-malaria therapy. In this study, several classification models were built to distinguish active and weakly active PfG6PD inhibitors by support vector machine method. Each molecule was initially represented by 1,044 molecular descriptors calculated by ADRIANA.Code. Correlation analysis and attribute selection methods in Weka were used to get the best reduced set of molecular descriptors, respectively. The best model (Model 2w) gave a prediction accuracy (Q) of 93.88 % and a Matthew's correlation coefficient (MCC) of 0.88 on the test set. Some properties such as [Formula: see text] atom charge, [Formula: see text] atom charge, and lone pair electronegativity-related descriptors are important for the interaction between the PfG6PD and the inhibitor.

摘要

恶性疟原虫葡萄糖-6-磷酸脱氢酶(PfG6PD)被认为是抗疟治疗严重形式的潜在靶点。在这项研究中,使用支持向量机方法构建了几种分类模型,以区分活性和弱活性 PfG6PD 抑制剂。每个分子最初由 ADRIANA.Code 计算的 1044 个分子描述符表示。在 Weka 中使用相关性分析和属性选择方法,分别得到最佳的分子描述符简化集。最佳模型(Model 2w)在测试集上的预测准确率(Q)为 93.88%,马修斯相关系数(MCC)为 0.88。一些性质,如[公式:见文本]原子电荷、[公式:见文本]原子电荷和孤对电负性相关描述符,对于 PfG6PD 与抑制剂之间的相互作用很重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验