Suppr超能文献

通过短程势附着在基底上的囊泡的平衡态。

The equilibria of vesicles adhered to substrates by short-ranged potentials.

作者信息

Blount Maurice J, Miksis Michael J, Davis Stephen H

机构信息

Department of Engineering Sciences and Applied Mathematics , Northwestern University , Evanston, IL 60208, USA.

出版信息

Proc Math Phys Eng Sci. 2013 May 8;469(2153):20120729. doi: 10.1098/rspa.2012.0729.

Abstract

In equilibrium, a vesicle that is adhered to a horizontal substrate by a long-range attractive, short-range repulsive force traps a thin layer of fluid beneath it. In the asymptotic limit that this layer is very thin, there are quasi-two-dimensional boundary-layer structures near the edges of the vesicle, where the membrane's shape is governed by a balance between bending and adhesive stresses. These boundary layers are analysed to obtain corrections to simpler models that instead represent the adhesive interaction by a contact potential, thereby resolving apparent discontinuities that arise when such models are used. Composite expansions of the shapes of two-dimensional vesicles are derived. When, in addition, the adhesive interaction is very strong, there is a nested boundary-layer structure for which the adhesive boundary layers match towards sharp corners where bending stresses remain important but adhesive stresses are negligible. Outside these corners, bending stresses are negligible and the vesicle's shape is given approximately by the arc of a circle. Simple composite expansions of the vesicle's shape are derived that account for the shape of the membrane inside these corners.

摘要

在平衡状态下,一个通过长程吸引力和短程排斥力附着在水平基底上的囊泡会在其下方捕获一层薄薄的流体。在该层非常薄的渐近极限情况下,囊泡边缘附近存在准二维边界层结构,其中膜的形状由弯曲应力和粘附应力之间的平衡决定。对这些边界层进行分析,以获得对更简单模型的修正,这些简单模型通过接触势来表示粘附相互作用,从而解决使用此类模型时出现的明显不连续性。推导了二维囊泡形状的复合展开式。此外,当粘附相互作用非常强时,存在一种嵌套边界层结构,对于这种结构,粘附边界层在弯曲应力仍然重要但粘附应力可忽略不计的尖角处匹配。在这些角之外,弯曲应力可忽略不计,囊泡的形状近似由一段圆弧给出。推导了囊泡形状的简单复合展开式,该展开式考虑了这些角内膜的形状。

相似文献

1
The equilibria of vesicles adhered to substrates by short-ranged potentials.
Proc Math Phys Eng Sci. 2013 May 8;469(2153):20120729. doi: 10.1098/rspa.2012.0729.
2
Adhesion of fluid vesicles at chemically structured substrates.
Eur Phys J E Soft Matter. 2007 Nov;24(3):217-27. doi: 10.1140/epje/i2007-10232-2. Epub 2007 Nov 29.
3
Adhesive interactions between vesicles in the strong adhesion limit.
Langmuir. 2011 Jan 4;27(1):59-73. doi: 10.1021/la1023168. Epub 2010 Dec 3.
4
Role of Interaction Range and Buoyancy on the Adhesion of Vesicles.
Langmuir. 2024 Feb 6;40(7):3376-90. doi: 10.1021/acs.langmuir.3c02715.
5
Shape transformation and manipulation of a vesicle by active particles.
J Chem Phys. 2019 Jan 28;150(4):044907. doi: 10.1063/1.5078694.
6
Electrohydrodynamic model of vesicle deformation in alternating electric fields.
Biophys J. 2009 Jun 17;96(12):4789-803. doi: 10.1016/j.bpj.2009.03.054.
7
Shape of fluid vesicles anchored by rigid rod.
J Phys Chem B. 2006 May 18;110(19):9698-707. doi: 10.1021/jp0562633.
8
Inclusion-induced boundary layers in lipid vesicles.
Biomech Model Mechanobiol. 2007 Sep;6(5):297-301. doi: 10.1007/s10237-006-0066-6. Epub 2006 Nov 23.
9
Optimal shapes and stresses of adherent cells on patterned substrates.
Soft Matter. 2014 Apr 14;10(14):2424-30. doi: 10.1039/c3sm52647j.
10
Deleterious localized stress fields: the effects of boundaries and stiffness tailoring in anisotropic laminated plates.
Proc Math Phys Eng Sci. 2016 Oct;472(2194):20160391. doi: 10.1098/rspa.2016.0391.

引用本文的文献

1
Role of Interaction Range and Buoyancy on the Adhesion of Vesicles.
Langmuir. 2024 Feb 6;40(7):3376-90. doi: 10.1021/acs.langmuir.3c02715.
2
Foundations of modeling in cryobiology-II: Heat and mass transport in bulk and at cell membrane and ice-liquid interfaces.
Cryobiology. 2019 Dec;91:3-17. doi: 10.1016/j.cryobiol.2019.09.014. Epub 2019 Oct 4.
3
New poly(amino acid methacrylate) brush supports the formation of well-defined lipid membranes.
Langmuir. 2015 Mar 31;31(12):3668-77. doi: 10.1021/la504163s. Epub 2015 Mar 19.
4
A continuum model of docking of synaptic vesicle to plasma membrane.
J R Soc Interface. 2015 Jan 6;12(102):20141119. doi: 10.1098/rsif.2014.1119.

本文引用的文献

1
Fluid flow beneath a semipermeable membrane during drying processes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 2):016330. doi: 10.1103/PhysRevE.85.016330. Epub 2012 Jan 31.
2
Adhesion of multicomponent vesicle membranes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):041919. doi: 10.1103/PhysRevE.81.041919. Epub 2010 Apr 28.
3
Adhesion of vesicles to curved substrates.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jan;77(1 Pt 1):011907. doi: 10.1103/PhysRevE.77.011907. Epub 2008 Jan 15.
4
Budding and fission of a multiphase vesicle.
Eur Phys J E Soft Matter. 2006 Aug;20(4):409-20. doi: 10.1140/epje/i2006-10030-4. Epub 2006 Sep 7.
5
Force-controlled equilibria of specific vesicle-substrate adhesion.
Biophys J. 2006 Apr 1;90(7):L52-4. doi: 10.1529/biophysj.105.079426. Epub 2006 Feb 10.
6
Vesicles in haptotaxis with hydrodynamical dissipation.
Eur Phys J E Soft Matter. 2003 Feb;10(2):175-89. doi: 10.1140/epje/e2003-00022-1.
7
Influence of shear flow on vesicles near a wall: A numerical study.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jul;64(1 Pt 1):011916. doi: 10.1103/PhysRevE.64.011916. Epub 2001 Jun 26.
8
Adhesion-induced receptor segregation and adhesion plaque formation: A model membrane study.
Biophys J. 1999 Oct;77(4):2311-28. doi: 10.1016/S0006-3495(99)77070-0.
9
Adhesion of vesicles in two dimensions.
Phys Rev A. 1991 Jun 15;43(12):6803-6814. doi: 10.1103/physreva.43.6803.
10
Adhesion of vesicles.
Phys Rev A. 1990 Oct 15;42(8):4768-4771. doi: 10.1103/physreva.42.4768.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验