Suppr超能文献

运动皮层微电路中的神经动力学和信息表示。

Neural dynamics and information representation in microcircuits of motor cortex.

机构信息

Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute Wako, Saitama, Japan.

出版信息

Front Neural Circuits. 2013 May 3;7:85. doi: 10.3389/fncir.2013.00085. eCollection 2013.

Abstract

The brain has to analyze and respond to external events that can change rapidly from time to time, suggesting that information processing by the brain may be essentially dynamic rather than static. The dynamical features of neural computation are of significant importance in motor cortex that governs the process of movement generation and learning. In this paper, we discuss these features based primarily on our recent findings on neural dynamics and information coding in the microcircuit of rat motor cortex. In fact, cortical neurons show a variety of dynamical behavior from rhythmic activity in various frequency bands to highly irregular spike firing. Of particular interest are the similarity and dissimilarity of the neuronal response properties in different layers of motor cortex. By conducting electrophysiological recordings in slice preparation, we report the phase response curves (PRCs) of neurons in different cortical layers to demonstrate their layer-dependent synchronization properties. We then study how motor cortex recruits task-related neurons in different layers for voluntary arm movements by simultaneous juxtacellular and multiunit recordings from behaving rats. The results suggest an interesting difference in the spectrum of functional activity between the superficial and deep layers. Furthermore, the task-related activities recorded from various layers exhibited power law distributions of inter-spike intervals (ISIs), in contrast to a general belief that ISIs obey Poisson or Gamma distributions in cortical neurons. We present a theoretical argument that this power law of in vivo neurons may represent the maximization of the entropy of firing rate with limited energy consumption of spike generation. Though further studies are required to fully clarify the functional implications of this coding principle, it may shed new light on information representations by neurons and circuits in motor cortex.

摘要

大脑必须分析和响应外部事件,这些事件可能会随时迅速变化,这表明大脑的信息处理可能本质上是动态的,而不是静态的。神经计算的动态特征在运动皮层中具有重要意义,运动皮层控制着运动产生和学习的过程。在本文中,我们主要根据我们最近在大鼠运动皮层微电路中的神经动力学和信息编码方面的发现来讨论这些特征。事实上,皮质神经元表现出各种动态行为,从各种频段的节律活动到高度不规则的尖峰放电。特别有趣的是运动皮层不同层中神经元响应特性的相似性和差异性。通过在切片制备中进行电生理记录,我们报告了不同皮层层中神经元的相位响应曲线(PRC),以证明它们的层依赖同步特性。然后,我们通过对行为大鼠进行同时细胞内和多单位记录,研究了运动皮层如何在不同层中招募与任务相关的神经元来进行自主手臂运动。结果表明,在浅层和深层之间,功能活动的频谱存在有趣的差异。此外,从不同层记录的与任务相关的活动表现出尖峰间隔(ISI)的幂律分布,与皮质神经元中 ISI 遵循泊松或伽马分布的一般信念相反。我们提出了一个理论论点,即这种活体神经元的幂律可能代表了在有限的尖峰产生能量消耗下,发射率熵的最大化。尽管还需要进一步的研究来充分阐明这种编码原理的功能意义,但它可能为运动皮层中神经元和电路的信息表示提供新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33d0/3642500/a2f10646f788/fncir-07-00085-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验