Suppr超能文献

非局部反应样品的阻抗测量及局部反应假设的影响。

Impedance measurement of non-locally reactive samples and the influence of the assumption of local reaction.

机构信息

Universidade Federal de Santa Maria, Engenharia Acústica, Grupo de Pesquisa em Acústica e Vibrações, Avenue Roraima, 1000-Cidade Universitária, Camobi, Santa Maria, Rio Grande do Sul 97105-900, Brazil.

出版信息

J Acoust Soc Am. 2013 May;133(5):2722-31. doi: 10.1121/1.4799015.

Abstract

In this paper, the measurement of the absorption coefficient of non-locally reactive sample layers of thickness d1 backed by a rigid wall is investigated. The investigation is carried out with the aid of real and theoretical experiments, which assume a monopole sound source radiating sound above an infinite non-locally reactive layer. A literature search revealed that the number of papers devoted to this matter is rather limited in comparison to those which address the measurement of locally reactive samples. Furthermore, the majority of papers published describe the use of two or more microphones whereas this paper focuses on the measurement with the pressure-particle velocity sensor (PU technique). For these reasons, the assumption that the sample is locally reactive is initially explored, so that the associated measurement errors can be quantified. Measurements in the impedance tube and in a semi-anechoic room are presented to validate the theoretical experiment. For samples with a high non-local reaction behavior, for which the measurement errors tend to be high, two different algorithms are proposed in order to minimize the associated errors.

摘要

本文研究了在刚性壁支撑下厚度为 d1 的非局部反应样品层的吸收系数的测量。借助于真实和理论实验进行了研究,这些实验假设单极声源在无限非局部反应层上方辐射声音。文献检索表明,与那些专门研究局部反应样品测量的论文相比,涉及该问题的论文数量相当有限。此外,大多数已发表的论文都描述了使用两个或更多麦克风,而本文则重点介绍了使用压力-粒子速度传感器(PU 技术)进行测量。出于这些原因,最初探索了样品具有局部反应的假设,以便可以量化相关的测量误差。本文在阻抗管和半消声室中进行了测量,以验证理论实验。对于具有高非局部反应行为的样品,其测量误差趋于较高,因此提出了两种不同的算法以最小化相关误差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验