Suppr超能文献

交流:证明势能景观。

Communication: Certifying the potential energy landscape.

机构信息

Department of Physics, Syracuse University, Syracuse, New York 13244, USA.

出版信息

J Chem Phys. 2013 May 7;138(17):171101. doi: 10.1063/1.4803162.

Abstract

It is highly desirable for numerical approximations to stationary points for a potential energy landscape to lie in the corresponding quadratic convergence basin. However, it is possible that an approximation may lie only in the linear convergence basin, or even in a chaotic region, and hence not converge to the actual stationary point when further optimization is attempted. Proving that a numerical approximation will quadratically converge to the associated stationary point is termed certification. Here, we apply Smale's α-theory to stationary points, providing a certification serving as a mathematical proof that the numerical approximation does indeed correspond to an actual stationary point, independent of the precision employed. As a practical example, employing recently developed certification algorithms, we show how the α-theory can be used to certify all the known minima and transition states of Lennard-Jones LJ(N) atomic clusters for N = 7, ..., 14.

摘要

对于势能景观的稳定点的数值逼近,理想情况下应位于相应的二次收敛域中。然而,逼近可能仅位于线性收敛域中,甚至在混沌区域中,因此在进一步优化时可能无法收敛到实际的稳定点。证明数值逼近将二次收敛到相关的稳定点称为认证。在这里,我们将 Smale 的 α 理论应用于稳定点,提供了一个认证,作为数学证明,表明数值逼近确实对应于实际的稳定点,而与所采用的精度无关。作为一个实际的例子,我们使用最近开发的认证算法,展示了如何使用 α 理论来认证 Lennard-Jones LJ(N) 原子团簇的所有已知的极小值和过渡态,其中 N = 7,...,14。

相似文献

1
Communication: Certifying the potential energy landscape.
J Chem Phys. 2013 May 7;138(17):171101. doi: 10.1063/1.4803162.
2
Certification and the potential energy landscape.
J Chem Phys. 2014 Jun 14;140(22):224114. doi: 10.1063/1.4881638.
3
Symmetrisation schemes for global optimisation of atomic clusters.
Phys Chem Chem Phys. 2013 Mar 21;15(11):3965-76. doi: 10.1039/c3cp44332a.
4
Exploring the potential energy landscape of the Thomson problem via Newton homotopies.
J Chem Phys. 2015 May 21;142(19):194113. doi: 10.1063/1.4921163.
5
Energy landscape of a lennard-jones liquid: statistics of stationary points.
Phys Rev Lett. 2000 Dec 18;85(25):5360-3. doi: 10.1103/PhysRevLett.85.5360.
6
Identifying communities within energy landscapes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Apr;71(4 Pt 2):046101. doi: 10.1103/PhysRevE.71.046101. Epub 2005 Apr 1.
7
From sticky-hard-sphere to Lennard-Jones-type clusters.
Phys Rev E. 2018 Apr;97(4-1):043309. doi: 10.1103/PhysRevE.97.043309.
8
Finding all the stationary points of a potential-energy landscape via numerical polynomial-homotopy-continuation method.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 2):025702. doi: 10.1103/PhysRevE.84.025702. Epub 2011 Aug 22.
9
Global potential energy minima of C60(H2O)n clusters.
J Phys Chem B. 2006 Jul 13;110(27):13357-62. doi: 10.1021/jp0572582.
10
Equilibrium thermodynamics from basin-sampling.
J Chem Phys. 2006 Jan 28;124(4):044102. doi: 10.1063/1.2148958.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验