Centre for Theoretical Chemistry and Physics, New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0632 Auckland, New Zealand.
Department of Physics, University of South Florida, Tampa, Florida 33620, USA.
Phys Rev E. 2018 Apr;97(4-1):043309. doi: 10.1103/PhysRevE.97.043309.
A relation M_{SHS→LJ} between the set of nonisomorphic sticky-hard-sphere clusters M_{SHS} and the sets of local energy minima M_{LJ} of the (m,n)-Lennard-Jones potential V_{mn}^{LJ}(r)=ɛ/n-m[mr^{-n}-nr^{-m}] is established. The number of nonisomorphic stable clusters depends strongly and nontrivially on both m and n and increases exponentially with increasing cluster size N for N≳10. While the map from M_{SHS}→M_{SHS→LJ} is noninjective and nonsurjective, the number of Lennard-Jones structures missing from the map is relatively small for cluster sizes up to N=13, and most of the missing structures correspond to energetically unfavorable minima even for fairly low (m,n). Furthermore, even the softest Lennard-Jones potential predicts that the coordination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic extended Lennard-Jones potential chosen from coupled-cluster calculations for a rare gas dimer leads to a substantial increase in the number of nonisomorphic clusters, even though the potential curve is very similar to a (6,12)-Lennard-Jones potential.
建立了非同构粘性硬球簇 M_{SHS}和(m,n)- Lennard-Jones 势 V_{mn}^{LJ}(r)=ɛ/n-m[mr^{-n}-nr^{-m}]的局部能量极小值 M_{LJ}集之间的关系 M_{SHS→LJ}。非同构稳定簇的数量强烈且非平凡地取决于 m 和 n,并且对于 N≳10 的簇大小呈指数增长。虽然 M_{SHS}→M_{SHS→LJ}的映射是非单射和非满射的,但是对于高达 N=13 的簇大小,缺少映射的 Lennard-Jones 结构的数量相对较小,并且大多数缺失的结构对应于即使对于相当低的(m,n)也不利的最小能量。此外,即使是最柔软的 Lennard-Jones 势也预测 13 个球体围绕中心球体的配位存在问题(Gregory-Newton 问题)。从稀有气体二聚体的耦合簇计算中选择的更现实的扩展 Lennard-Jones 势会导致非同构簇数量的大量增加,尽管势曲线与(6,12)- Lennard-Jones 势非常相似。