Department of Physics and Astronomy and Science for Life Laboratory, Uppsala University, P.O. Box 803, S-75108 Uppsala, Sweden.
J Chem Phys. 2013 May 7;138(17):175101. doi: 10.1063/1.4801330.
We construct an energy function that describes the crystallographic structure of sperm whale myoglobin backbone. As a model in our construction, we use the Protein Data Bank entry 1ABS that has been measured at liquid helium temperature. Consequently, the thermal B-factor fluctuations are very small, which is an advantage in our construction. The energy function that we utilize resembles that of the discrete nonlinear Schrödinger equation. Likewise, ours supports topological solitons as local minimum energy configurations. We describe the 1ABS backbone in terms of topological solitons with a precision that deviates from 1ABS by an average root-mean-square distance, which is less than the experimentally observed Debye-Waller B-factor fluctuation distance. We then subject the topological multi-soliton solution to extensive numerical heating and cooling experiments, over a very wide range of temperatures. We concentrate in particular to temperatures above 300 K and below the Θ-point unfolding temperature, which is around 348 K. We confirm that the behavior of the topological multi-soliton is fully consistent with Anfinsen's thermodynamic principle, up to very high temperatures. We observe that the structure responds to an increase of temperature consistently in a very similar manner. This enables us to characterize the onset of thermally induced conformational changes in terms of three distinct backbone ligand gates. One of the gates is made of the helix F and the helix E. The two other gates are chosen similarly, when open they provide a direct access route for a ligand to reach the heme. We find that out of the three gates we investigate, the one which is formed by helices B and G is the most sensitive to thermally induced conformational changes. Our approach provides a novel perspective to the important problem of ligand entry and exit.
我们构建了一个能量函数,用于描述抹香鲸肌红蛋白骨架的晶体结构。在构建过程中,我们使用了在液氦温度下测量的 PDB 条目 1ABS 作为模型。因此,热 B 因子波动非常小,这在我们的构建中是一个优势。我们使用的能量函数类似于离散非线性薛定谔方程。同样,我们的能量函数支持拓扑孤子作为局部最小能量构型。我们使用拓扑孤子来描述 1ABS 骨架,其精度与 1ABS 的平均均方根偏差小于实验观测到的德拜-沃勒 B 因子波动距离。然后,我们对拓扑多孤子解进行了广泛的数值加热和冷却实验,实验温度范围很宽。我们特别关注 300 K 以上和Θ-点展开温度以下的温度,Θ-点展开温度约为 348 K。我们确认,拓扑多孤子的行为在非常高的温度下完全符合 Anfinsen 的热力学原理。我们观察到,结构对温度的升高的响应方式非常相似。这使我们能够根据三个不同的骨架配体门来描述热诱导构象变化的开始。其中一个门由螺旋 F 和螺旋 E 组成。另外两个门也以类似的方式选择,当它们打开时,它们为配体提供了直接进入血红素的通道。我们发现,在我们研究的三个门中,由螺旋 B 和 G 形成的那个门对热诱导构象变化最敏感。我们的方法为配体进入和退出的重要问题提供了新的视角。