Laboratory of Physics of Living Matter, Far Eastern Federal University, 690950, Sukhanova 8, Vladivostok, Russia.
Nordita, Stockholm University, Roslagstullsbacken 23, SE-106 91, Stockholm, Sweden.
Sci Rep. 2019 Jul 25;9(1):10819. doi: 10.1038/s41598-019-47317-y.
We develop an effective theory approach to investigate the phase properties of globular proteins. Instead of interactions between individual atoms or localized interaction centers, the approach builds directly on the tertiary structure of a protein. As an example we construct the phase diagram of (apo)myoglobin with temperature (T) and acidity (pH) as the thermodynamical variables. We describe how myoglobin unfolds from the native folded state to a random coil when temperature and acidity increase. We confirm the presence of two molten globule folding intermediates, and we predict an abrupt transition between the two when acidity changes. When temperature further increases we find that the abrupt transition line between the two molten globule states terminates at a tricritical point, where the helical structures fade away. Our results also suggest that the ligand entry and exit is driven by large scale collective motions that destabilize the myoglobin F-helix.
我们开发了一种有效的理论方法来研究球状蛋白质的相性质。该方法不是基于单个原子或局部相互作用中心之间的相互作用,而是直接基于蛋白质的三级结构。作为一个例子,我们构建了(apo)肌红蛋白的相图,以温度(T)和酸度(pH)作为热力学变量。我们描述了当温度和酸度增加时,肌红蛋白如何从天然折叠状态展开到无规卷曲。我们证实了存在两个熔融球蛋白折叠中间体,并预测了当酸度变化时,两者之间会发生突然的转变。当温度进一步升高时,我们发现两个熔融球蛋白状态之间的突然转变线在三叉点终止,此时螺旋结构消失。我们的结果还表明,配体的进入和退出是由大规模的集体运动驱动的,这些运动使肌红蛋白 F 螺旋失稳。