Agricultural Research Service, Global Change and Photosynthesis Research Unit, US Department of Agriculture, University of Illinois, Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL, 61801, USA,
Photosynth Res. 2014 Feb;119(1-2):65-76. doi: 10.1007/s11120-013-9837-y. Epub 2013 May 9.
Efficient methods for accurate and meaningful high-throughput plant phenotyping are limiting the development and breeding of stress-tolerant crops. A number of emerging techniques, specifically remote sensing methods, have been identified as promising tools for plant phenotyping. These remote sensing methods can be used to accurately and rapidly relate variations in leaf optical properties with important plant characteristics, such as chemistry, morphology, and photosynthetic properties at the leaf and canopy scales. In this study, we explored the potential to utilize optical (λ = 500-2,400 nm) near-surface remote sensing reflectance spectroscopy to evaluate the effects of ozone pollution on photosynthetic capacity of soybean (Glycine max Merr.). The research was conducted at the Soybean Free Air Concentration Enrichment (SoyFACE) facility where we subjected plants to ambient (44 nL L(-1)) and elevated ozone (79-82 nL L(-1) target) concentrations throughout the growing season. Exposure to elevated ozone resulted in a significant loss of productivity, with the ozone-treated plants displaying a ~30 % average decrease in seed yield. From leaf reflectance data, it was also clear that elevated ozone decreased leaf nitrogen and chlorophyll content as well as the photochemical reflectance index (PRI), an optical indicator of the epoxidation state of xanthophyll cycle pigments and thus physiological status. We assessed the potential to use leaf reflectance properties and partial least-squares regression (PLSR) modeling as an alternative, rapid approach to standard gas exchange for the estimation of the maximum rates of RuBP carboxylation (V c,max), an important parameter describing plant photosynthetic capacity. While we did not find a significant impact of ozone fumigation on V c,max, standardized to a reference temperature of 25 °C, the PLSR approach provided accurate and precise estimates of V c,max across ambient plots and ozone treatments (r (2) = 0.88 and RMSE = 13.4 μmol m(-2) s(-1)) based only on the variation in leaf optical properties and despite significant variability in leaf nutritional status. The results of this study illustrate the potential for combining the phenotyping methods used here with high-throughput genotyping methods as a promising approach for elucidating the basis for ozone tolerance in sensitive crops.
高效准确且有意义的高通量植物表型分析方法是限制抗逆作物开发和培育的瓶颈。一些新兴技术,特别是遥感方法,已被确定为植物表型分析的有前途的工具。这些遥感方法可用于准确快速地将叶片光学特性的变化与叶片和冠层尺度上的重要植物特性(如化学、形态和光合作用特性)联系起来。在这项研究中,我们探讨了利用光学(λ=500-2400nm)近地表遥感反射率光谱来评估臭氧污染对大豆(Glycine max Merr.)光合作用能力的影响的可能性。该研究是在大豆自由空气浓度富集(SoyFACE)设施中进行的,在整个生长季节中,我们让植物处于环境(44nL L(-1))和升高的臭氧(79-82nL L(-1)目标)浓度下。暴露于升高的臭氧会导致生产力显著下降,臭氧处理的植物种子产量平均下降约 30%。从叶片反射率数据中还可以清楚地看出,升高的臭氧降低了叶片氮和叶绿素含量以及光化学反射率指数(PRI),这是叶黄素循环色素环氧化状态和生理状态的光学指标。我们评估了使用叶片反射率特性和偏最小二乘回归(PLSR)模型作为替代方法的潜力,该方法快速且无需标准气体交换即可估算最大 RuBP 羧化速率(V c,max),这是描述植物光合作用能力的一个重要参数。虽然我们没有发现臭氧熏蒸对 V c,max 的显著影响,但标准化到 25°C 的参考温度后,PLSR 方法在环境斑块和臭氧处理中提供了 V c,max 的准确而精确的估计(r (2)=0.88 和 RMSE=13.4μmol m(-2)s(-1)),仅基于叶片光学特性的变化,尽管叶片营养状况存在显著差异。这项研究的结果说明了将这里使用的表型分析方法与高通量基因分型方法相结合的潜力,这是阐明敏感作物臭氧耐受性基础的一种很有前途的方法。