Colegio de Postgraduados, Km. 36.5 Carretera Mexico-Texcoco, C.P. 56230.
J Anim Sci. 2013 Aug;91(8):3522-31. doi: 10.2527/jas.2012-6162. Epub 2013 May 8.
In recent years, several statistical models have been developed for predicting genetic values for complex traits using information on dense molecular markers, pedigrees, or both. These models include, among others, the Bayesian regularized neural networks (BRNN) that have been widely used in prediction problems in other fields of application and, more recently, for genome-enabled prediction. The R package described here (brnn) implements BRNN models and extends these to include both additive and dominance effects. The implementation takes advantage of multicore architectures via a parallel computing approach using openMP (Open Multiprocessing) for the computations. This note briefly describes the classes of models that can be fitted using the brnn package, and it also illustrates its use through several real examples.
近年来,已经开发出了几种统计模型,用于使用密集分子标记、系谱或两者的信息来预测复杂性状的遗传值。这些模型包括贝叶斯正则化神经网络(BRNN),它已被广泛应用于其他应用领域的预测问题,以及最近用于基因组预测的模型。这里描述的 R 包(brnn)实现了 BRNN 模型,并将其扩展为包括加性和显性效应。该实现通过使用 OpenMP(开放多处理)的并行计算方法利用多核架构来进行计算。本说明简要描述了可以使用 brnn 包拟合的模型类别,并通过几个实际示例说明了它的使用。