Suppr超能文献

基于基因组的贝叶斯线性和非线性回归模型对有序数据的预测。

Genome-based prediction of Bayesian linear and non-linear regression models for ordinal data.

机构信息

Colegio de Postgraduados, CP 56230, Montecillos, Edo. de, México.

Facultad de Telemática, Universidad de Colima, Colima, 28040, México.

出版信息

Plant Genome. 2020 Jul;13(2):e20021. doi: 10.1002/tpg2.20021. Epub 2020 May 14.

Abstract

Linear and non-linear models used in applications of genomic selection (GS) can fit different types of responses (e.g., continuous, ordinal, binary). In recent years, several genomic-enabled prediction models have been developed for predicting complex traits in genomic-assisted animal and plant breeding. These models include linear, non-linear and non-parametric models, mostly for continuous responses and less frequently for categorical responses. Several linear and non-linear models are special cases of a more general family of statistical models known as artificial neural networks, which provide better prediction ability than other models. In this paper, we propose a Bayesian Regularized Neural Network (BRNNO) for modelling ordinal data. The proposed model was fitted using a Bayesian framework; we used the data augmentation algorithm to facilitate computations. The proposed model was fitted using the Gibbs Maximum a Posteriori and Generalized EM algorithm implemented by combining code written in C and R programming languages. The new model was tested with two real maize datasets evaluated for Septoria and GLS diseases and was compared with the Bayesian Ordered Probit Model (BOPM). Results indicated that the BRNNO model performed better in terms of genomic-based prediction than the BOPM model.

摘要

线性和非线性模型在基因组选择 (GS) 的应用中可以拟合不同类型的响应(例如,连续、有序、二进制)。近年来,已经开发了几种基于基因组的预测模型,用于预测基因组辅助动物和植物育种中的复杂性状。这些模型包括线性、非线性和非参数模型,主要用于连续响应,较少用于分类响应。几种线性和非线性模型是称为人工神经网络的更一般统计模型族的特例,人工神经网络提供了比其他模型更好的预测能力。在本文中,我们提出了一种用于有序数据建模的贝叶斯正则化神经网络 (BRNNO)。使用贝叶斯框架拟合所提出的模型;我们使用数据增强算法来促进计算。使用 C 和 R 编程语言编写的代码组合实现的 Gibbs 最大后验和广义 EM 算法来拟合所提出的模型。使用评估 Septoria 和 GLS 疾病的两个真实玉米数据集对新模型进行了测试,并与贝叶斯有序概率模型 (BOPM) 进行了比较。结果表明,BRNNO 模型在基于基因组的预测方面的性能优于 BOPM 模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验