Suppr超能文献

发现时态数据库上的度量时态约束网络。

Discovering metric temporal constraint networks on temporal databases.

机构信息

Centro de Investigación en Tecnoloxías da Información (CITIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

出版信息

Artif Intell Med. 2013 Jul;58(3):139-54. doi: 10.1016/j.artmed.2013.03.006. Epub 2013 May 6.

Abstract

OBJECTIVE

In this paper, we propose the ASTPminer algorithm for mining collections of time-stamped sequences to discover frequent temporal patterns, as represented in the simple temporal problem (STP) formalism: a representation of temporal knowledge as a set of event types and a set of metric temporal constraints among them. To focus the mining process, some initial knowledge can be provided by the user, also expressed as an STP, that acts as a seed pattern for the searching procedure. In this manner, the mining algorithm will search for those frequent temporal patterns consistent with the initial knowledge.

BACKGROUND

Health organisations demand, for multiple areas of activity, new computational tools that will obtain new knowledge from huge collections of data. Temporal data mining has arisen as an active research field that provides new algorithms for discovering new temporal knowledge. An important point in defining different proposals is the expressiveness of the resulting temporal knowledge, which is commonly found in the bibliography in a qualitative form.

METHODOLOGY

ASTPminer develops an Apriori-like strategy in an iterative algorithm where, as a result of each iteration i, a set of frequent temporal patterns of size i is found that incorporates three distinctive mechanisms: (1) use of a clustering procedure over distributions of temporal distances between events to recognise similar occurrences as temporal patterns; (2) consistency checking of every combination of temporal patterns, which ensures the soundness of the resultant patterns; and (3) use of seed patterns to allow the user to drive the mining process.

RESULTS

To validate our proposal, several experiments were conducted over a database of time-stamped sequences obtained from polysomnography tests in patients with sleep apnea-hypopnea syndrome. ASTPminer was able to extract well-known temporal patterns corresponding to different manifestations of the syndrome. Furthermore, the use of seed patterns resulted in a reduction in the size of the search space, which reduced the number of possible patterns from 2.1×10⁷ to 1219 and reduced the number of frequent patterns found from 1167 to 340, thereby increasing the efficiency of the mining algorithm.

CONCLUSIONS

A temporal data mining technique for discovering frequent temporal patterns in collections of time-stamped event sequences is presented. The resulting patterns describe different and distinguishable temporal arrangements among sets of event types in terms of repetitive appearance and similarity of the dispositions between the same events. ASTPminer allows users to participate in the mining process by introducing domain knowledge in the form of a temporal pattern using the STP formalism. This knowledge constrains the search to patterns consistent with the provided pattern and improves the performance of the procedure.

摘要

目的

本文提出了 ASTPminer 算法,用于挖掘时间戳序列集合,以发现频繁的时间模式,这些模式用简单时间问题 (STP) 形式化表示:作为事件类型集和它们之间的度量时间约束集的时间知识表示。为了聚焦挖掘过程,可以由用户提供一些初始知识,也可以用 STP 表示,作为搜索过程的种子模式。通过这种方式,挖掘算法将搜索与初始知识一致的那些频繁时间模式。

背景

医疗保健组织需要在多个活动领域中使用新的计算工具,从大量数据中获取新知识。时间数据挖掘作为一个活跃的研究领域出现,为发现新的时间知识提供了新的算法。在定义不同提案时,一个重要的点是生成的时间知识的表达能力,通常在文献中以定性的形式找到。

方法

ASTPminer 在迭代算法中开发了类似于 Apriori 的策略,作为每次迭代 i 的结果,找到了一组大小为 i 的频繁时间模式,其中包含三个独特的机制:(1)使用事件之间时间距离分布的聚类过程来识别作为时间模式的相似事件;(2)对每个时间模式组合进行一致性检查,以确保模式的合理性;(3)使用种子模式允许用户驱动挖掘过程。

结果

为了验证我们的提案,在从睡眠呼吸暂停低通气综合征患者的多导睡眠图测试中获得的时间戳序列数据库上进行了多项实验。ASTPminer 能够提取对应于综合征不同表现的知名时间模式。此外,使用种子模式可以减少搜索空间的大小,将可能的模式数量从 2.1×10⁷减少到 1219,并将发现的频繁模式数量从 1167减少到 340,从而提高挖掘算法的效率。

结论

提出了一种用于在时间戳事件序列集合中发现频繁时间模式的时间数据挖掘技术。所得到的模式描述了事件类型集中不同且可区分的时间排列,以相同事件之间的重复出现和相似的排列为特征。ASTPminer 允许用户通过使用 STP 形式化表示引入形式为时间模式的领域知识来参与挖掘过程。这种知识约束了与提供模式一致的模式的搜索,并提高了过程的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验