Koh Cho Yeow, Kim Jessica E, Napoli Alberto J, Verlinde Christophe L M J, Fan Erkang, Buckner Frederick S, Van Voorhis Wesley C, Hol Wim G J
Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
Mol Biochem Parasitol. 2013 May;189(1-2):26-32. doi: 10.1016/j.molbiopara.2013.04.007. Epub 2013 May 7.
Malaria, most commonly caused by the parasite Plasmodium falciparum, is a devastating disease that remains a large global health burden. Lack of vaccines and drug resistance necessitate the continual development of new drugs and exploration of new drug targets. Due to their essential role in protein synthesis, aminoacyl-tRNA synthetases are potential anti-malaria drug targets. Here we report the crystal structures of P. falciparum cytosolic tryptophanyl-tRNA synthetase (Pf-cTrpRS) in its ligand-free state and tryptophanyl-adenylate (WAMP)-bound state at 2.34 Å and 2.40 Å resolutions, respectively. Large conformational changes are observed when the ligand-free protein is bound to WAMP. Multiple residues, completely surrounding the active site pocket, collapse onto WAMP. Comparison of the structures to those of human cytosolic TrpRS (Hs-cTrpRS) provides information about the possibility of targeting Pf-cTrpRS for inhibitor development. There is a high degree of similarity between Pf-cTrpRS and Hs-cTrpRS within the active site. However, the large motion that Pf-cTrpRS undergoes during transitions between different functional states avails an opportunity to arrive at compounds which selectively perturb the motion, and may provide a starting point for the development of new anti-malaria therapeutics.
疟疾,最常见的是由恶性疟原虫寄生虫引起的,是一种毁灭性疾病,仍然是全球巨大的健康负担。由于缺乏疫苗和耐药性,需要持续开发新药并探索新的药物靶点。由于氨酰 - tRNA合成酶在蛋白质合成中起着至关重要的作用,它们是潜在的抗疟疾药物靶点。在这里,我们分别报告了恶性疟原虫胞质色氨酰 - tRNA合成酶(Pf - cTrpRS)在无配体状态和色氨酰 - 腺苷酸(WAMP)结合状态下的晶体结构,分辨率分别为2.34 Å和2.40 Å。当无配体的蛋白质与WAMP结合时,观察到了大的构象变化。完全围绕活性位点口袋的多个残基向WAMP折叠。将这些结构与人类胞质色氨酰 - tRNA合成酶(Hs - cTrpRS)的结构进行比较,为开发针对Pf - cTrpRS的抑制剂提供了相关信息。在活性位点内,Pf - cTrpRS与Hs - cTrpRS有高度的相似性。然而,Pf - cTrpRS在不同功能状态之间转变时所经历的大的运动,为找到能够选择性干扰这种运动的化合物提供了机会,这可能为开发新的抗疟疾治疗药物提供一个起点。