Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
J Control Release. 2013 Sep 10;170(2):287-94. doi: 10.1016/j.jconrel.2013.04.022. Epub 2013 May 9.
Recent developments in nanotechnology have created considerable potential toward diagnosis and cancer therapy. In contrast, the use of nanotechnology in tissue repair or regeneration remains largely unexplored. We hypothesized that intramyocardial injection of insulin-like growth factor (IGF)-1-complexed poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (PLGA-IGF-1 NPs) increases IGF-1 retention, induces Akt phosphorylation, and provides early cardioprotection after acute myocardial infarction (MI). We synthesized 3 different sizes of PLGA particles (60 nm, 200 nm, and 1 μm) which were complexed with IGF-1 using electrostatic force to preserve the biological function of IGF-1. Afterward, we injected PLGA-IGF-1 NPs in the heart after MI directly. Compared with the other two larger particles, the 60 nm-sized PLGA-IGF-1 NPs carried more IGF-1 and induced more Akt phosphorylation in cultured cardiomyocytes. PLGA-IGF-1 NPs also prolonged Akt activation in cardiomyocytes up to 24h and prevented cardiomyocyte apoptosis induced by doxorubicin in a dose-dependent manner. In vivo, PLGA-IGF-1 NP treatment significantly retained more IGF-1 in the myocardium than the IGF-1 alone treatment at 2, 6, 8, and 24 h. Akt phosphorylation was detected in cardiomyocytes 24h post-MI only in hearts receiving PLGA-IGF-1 NP treatment, but not in hearts receiving injection of PBS, IGF-1 or PLGA NPs. Importantly, a single intramyocardial injection of PLGA-IGF-1 NPs was sufficient to prevent cardiomyocyte apoptosis (P<0.001), reduce infarct size (P<0.05), and improve left ventricle ejection fraction (P<0.01) 21 days after experimental MI in mice. Our results not only demonstrate the potential of nanoparticle-based technology as a new approach to treating MI, but also have significant implications for translation of this technology into clinical therapy for ischemic cardiovascular diseases.
纳米技术的最新发展为癌症的诊断和治疗带来了巨大的潜力。相比之下,纳米技术在组织修复或再生方面的应用仍在很大程度上尚未得到探索。我们假设,心肌内注射胰岛素样生长因子(IGF)-1 复合物聚(D,L-乳酸-共-乙醇酸)(PLGA)纳米颗粒(PLGA-IGF-1 NPs)可增加 IGF-1 的保留,诱导 Akt 磷酸化,并在急性心肌梗死(MI)后提供早期心脏保护。我们合成了 3 种不同大小的 PLGA 颗粒(60nm、200nm 和 1μm),它们通过静电力与 IGF-1 复合,以保持 IGF-1 的生物学功能。之后,我们直接将 PLGA-IGF-1 NPs 注射到 MI 后的心脏中。与另外两种较大的颗粒相比,60nm 大小的 PLGA-IGF-1 NPs 携带更多的 IGF-1,并在培养的心肌细胞中诱导更多的 Akt 磷酸化。PLGA-IGF-1 NPs 还能使 Akt 在心肌细胞中的激活持续 24 小时,并以剂量依赖性方式防止阿霉素诱导的心肌细胞凋亡。在体内,与单独给予 IGF-1 相比,PLGA-IGF-1 NP 治疗在 2、6、8 和 24 小时时能在心肌中保留更多的 IGF-1。仅在接受 PLGA-IGF-1 NP 治疗的心脏中,可检测到心肌梗死后 24 小时的心肌细胞中 Akt 磷酸化,但在接受 PBS、IGF-1 或 PLGA NPs 注射的心脏中未检测到。重要的是,单次心肌内注射 PLGA-IGF-1 NPs 足以防止心肌细胞凋亡(P<0.001),减少梗死面积(P<0.05),并改善实验性 MI 后 21 天小鼠的左心室射血分数(P<0.01)。我们的研究结果不仅证明了基于纳米颗粒的技术作为治疗 MI 的新方法的潜力,而且对将这项技术转化为缺血性心血管疾病的临床治疗具有重要意义。