Center for Applied Geoscience, University of Tübingen, Hölderlinstraße 12, D-72074 Tübingen, Germany.
Environ Sci Technol. 2013 Jul 2;47(13):6900-7. doi: 10.1021/es304879d. Epub 2013 Jun 4.
Separating microbial- and physical-induced effects on the isotope signals of contaminants has been identified as a challenge in interpreting compound-specific isotope data. In contrast to simple analytical tools, such as the Rayleigh equation, reactive-transport models can account for complex interactions of different fractionating processes. The question arises how complex such models must be to reproduce the data while the model parameters remain identifiable. In this study, we reanalyze the high-resolution data set of toluene concentration and toluene-specific δ(13)C from the toluene-pulse experiment performed by Qiu et al. (this issue). We apply five reactive-transport models, differing in their degree of complexity. We uniquely quantify degradation and sorption properties of the system for each model, estimate the contributions of biodegradation-induced, sorption-induced, and transverse-dispersion-induced isotope fractionation to the overall isotope signal, and investigate the error introduced in the interpretation of the data when individual processes are neglected. Our results show that highly resolved data of both concentration and isotope ratios are needed for unique process identification facilitating reliable model calibration. Combined analysis of these highly resolved data demands reactive transport models accounting for nonlinear degradation kinetics and isotope fractionation by both reactive and physical processes such as sorption and transverse dispersion.
将微生物和物理因素对污染物同位素信号的影响分开一直是解释化合物特异性同位素数据的一个挑战。与简单的分析工具(如瑞利方程)相比,反应性传输模型可以解释不同分馏过程的复杂相互作用。问题是,为了再现数据,模型必须复杂到什么程度,同时模型参数仍然可以识别。在这项研究中,我们重新分析了 Qiu 等人进行的甲苯脉冲实验中甲苯浓度和甲苯特异性 δ(13)C 的高分辨率数据集(本期)。我们应用了五个反应性传输模型,它们在复杂程度上有所不同。我们为每个模型唯一地量化了系统的降解和吸附特性,估计了生物降解诱导、吸附诱导和横向弥散诱导的同位素分馏对整体同位素信号的贡献,并研究了当忽略个别过程时,数据解释中的误差。我们的结果表明,需要高度解析的浓度和同位素比数据来进行独特的过程识别,从而实现可靠的模型校准。这些高度解析数据的综合分析需要考虑反应性和物理过程(如吸附和横向弥散)引起的非线性降解动力学和同位素分馏的反应性传输模型。