Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany; Walther Straub Institute of Pharmacology and Toxicology, University of Munich, Goethestraße 33, 80336 Munich, Germany.
Chem Biol Interact. 2013 Dec 5;206(3):479-90. doi: 10.1016/j.cbi.2013.05.001. Epub 2013 May 11.
Exposure of the respiratory tract to airborne particles (including metal-dusts and nano-particles) is considered as a serious health hazard. For a wide range of substances basic knowledge about the toxic properties and the underlying pathomechanisms is lacking or even completely missing. Legislation demands the toxicological characterization of all chemicals placed on the market until 2018 (REACH). As toxicological in vivo data are rare with regard to acute lung toxicity or exhibit distinct limitations (e.g. inter-species differences) and legislation claims the reduction of animal experiments in general ("3R" principle), profound in vitro models have to be established and characterized to meet these requirements. In this paper we characterize a recently introduced advanced in vitro exposure system (Cultex® RFS) showing a great similarity to the physiological in vivo exposure situation for the assessment of acute pulmonary toxicity of airborne materials. Using the Cultex® RFS, human lung epithelial cells (A549 cells) were exposed to different concentrations of airborne metal dusts (nano- and microscale particles) at the air-liquid-interface (ALI). Cell viability (WST-1 assay) as a parameter of toxicity was assessed 24h after exposure with special focus on the intra- and inter-laboratory (three independent laboratories) reproducibility. Our results show the general applicability of the Cultex® RFS with regard to the requirements of the ECVAM (European Centre for the Validation of Alternative Methods) principles on test validity underlining its robustness and stability. Intra- and inter-laboratory reproducibility can be considered as sufficient if predefined quality criteria are respected. Special attention must be paid to the pure air controls that turned out to be a critical parameter for a rational interpretation of the results. Our results are encouraging and future work is planned to improve the inter-laboratory reproducibility, to consolidate the results so far and to develop a valid prediction model.
呼吸道暴露于空气中的颗粒(包括金属粉尘和纳米颗粒)被认为是严重的健康危害。对于广泛的物质,基本的毒性特性和潜在的发病机制知识缺乏,甚至完全缺失。立法要求对 2018 年之前投放市场的所有化学品进行毒理学特征描述(REACH)。由于关于急性肺毒性的毒理学体内数据很少,或者表现出明显的局限性(例如种间差异),并且立法要求减少一般的动物实验(“3R”原则),因此必须建立和表征深刻的体外模型,以满足这些要求。在本文中,我们描述了一种最近引入的先进的体外暴露系统(Cultex® RFS),该系统在评估空气中物质的急性肺毒性方面与生理体内暴露情况非常相似。使用 Cultex® RFS,在气液界面(ALI)上以不同浓度的空气中金属粉尘(纳米和微米级颗粒)暴露于人肺上皮细胞(A549 细胞)。暴露 24 小时后,通过 WST-1 测定法评估细胞活力(毒性参数),特别关注实验室间(三个独立实验室)的重现性。我们的结果表明,Cultex® RFS 普遍适用于 ECVAM(替代方法验证欧洲中心)原则关于测试有效性的要求,强调了其稳健性和稳定性。如果遵守预定义的质量标准,则可以认为实验室间和实验室内部的重现性是足够的。必须特别注意纯净空气对照,事实证明纯净空气对照是合理解释结果的关键参数。我们的结果令人鼓舞,计划未来的工作是提高实验室间的重现性,巩固迄今为止的结果,并开发有效的预测模型。