Medical Physics Section, Department of Surgical, Radiological and Odontostomatolic Sciences, University of Perugia, Via E. dal Pozzo pad. W, 06126 Perugia, Italy.
Eur J Appl Physiol. 2013 Sep;113(9):2263-73. doi: 10.1007/s00421-013-2656-1. Epub 2013 May 14.
A biomechanical model was developed to simulate the selective effect of the co-contraction force provided by each hamstring muscle on the shear and compressive tibiofemoral joint reaction forces, during open kinetic-chain knee-extension exercises. This model accounts for instantaneous values of knee flexion angle [Formula: see text], angular velocity and acceleration, and for changes in magnitude, orientation, and application point of external resistance. The tibiofemoral shear force (TFSF) largely determines the tensile force on anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL). Biceps femoris is the most effective hamstring muscle in decreasing the ACL-loading TFSF developed by quadriceps contractions for [Formula: see text]. In this range, the semimembranosus generates the dominant tibiofemoral compressive force, which enhances joint stability, opposes anterior/posterior tibial translations, and protects cruciate ligaments. The semitendinosus force provides the greatest decreasing gradient of ACL-loading TFSF for [Formula: see text], and the greatest increasing gradient of tibiofemoral compressive force for [Formula: see text]. However, semitendinosus efficacy is strongly limited by its small physiological section. Hamstring muscles behave as a unique muscle in enhancing the PCL-loading TFSF produced by quadriceps contractions for [Formula: see text]. The levels of hamstrings co-activation that suppress the ACL-loading TFSF considerably shift when the knee angular acceleration is changed while maintaining the same level of knee extensor torque by a concurrent adjustment in the magnitude of external resistance. The knowledge of the specific role and the optimal activation level of each hamstring muscle in ACL protection and tibiofemoral stability are fundamental for planning safe and effective rehabilitative knee-extension exercises.
建立了一个生物力学模型,以模拟在开放式动力链膝关节伸展运动中,每条腘绳肌提供的协同收缩力对剪切和压缩胫股关节反作用力的选择性影响。该模型考虑了膝关节弯曲角度 [公式:见文本]、角速度和角加速度的瞬时值,以及外部阻力的大小、方向和作用点的变化。胫股剪切力(TFSF)在很大程度上决定了前交叉韧带(ACL)和后交叉韧带(PCL)的拉伸力。股二头肌是在 [公式:见文本] 时降低股四头肌收缩引起的 ACL 负荷 TFSF 的最有效腘绳肌。在这个范围内,半膜肌产生主导的胫股压缩力,增强关节稳定性,对抗前后胫骨平移,并保护交叉韧带。半腱肌力提供 ACL 负荷 TFSF 的最大减小梯度[公式:见文本],以及胫股压缩力的最大增加梯度 [公式:见文本]。然而,半腱肌的功效受到其小生理截面的强烈限制。腘绳肌作为一种独特的肌肉,在增强股四头肌收缩产生的 PCL 负荷 TFSF 方面表现出色[公式:见文本]。当保持相同的膝关节伸肌扭矩水平而通过同时调整外部阻力的大小改变膝关节角加速度时,抑制 ACL 负荷 TFSF 的腘绳肌协同激活水平会发生相当大的变化。了解每条腘绳肌在 ACL 保护和胫股稳定性方面的特定作用和最佳激活水平对于规划安全有效的膝关节伸展康复运动至关重要。