Suppr超能文献

基于同伦的自适应正则化方法用于稀疏荧光层析成像。

Adaptive regularized method based on homotopy for sparse fluorescence tomography.

作者信息

Xue Zhenwen, Ma Xibo, Zhang Qian, Wu Ping, Yang Xin, Tian Jie

机构信息

Intelligent Medical Research Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Appl Opt. 2013 Apr 10;52(11):2374-84. doi: 10.1364/AO.52.002374.

Abstract

Determining an appropriate regularization parameter is often challenging work because it has a narrow range and varies with problems, which is likely to lead to large reconstruction errors. In this contribution, an adaptive regularized method based on homotopy is presented for sparse fluorescence tomography reconstruction. Due to the adaptive regularization strategy, the proposed method is always able to reconstruct sources accurately independent of the estimation of the regularization parameter. Moreover, the proposed method is about two orders of magnitude faster than the two contrasting methods. Numerical and in vivo mouse experiments have been employed to validate the robustness and efficiency of the proposed method.

摘要

确定一个合适的正则化参数往往是一项具有挑战性的工作,因为它的取值范围很窄且会因问题而异,这很可能导致较大的重建误差。在本文中,提出了一种基于同伦的自适应正则化方法用于稀疏荧光层析成像重建。由于采用了自适应正则化策略,所提出的方法总能准确地重建源,而与正则化参数的估计无关。此外,所提出的方法比另外两种对比方法快大约两个数量级。已通过数值实验和小鼠体内实验来验证所提方法的稳健性和效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验