Suppr超能文献

单节点兴奋性的自发波动调节节间连接性:一项经颅磁刺激-脑电图研究。

The spontaneous fluctuation of the excitability of a single node modulates the internodes connectivity: a TMS-EEG study.

作者信息

Giambattistelli Federica, Tomasevic Leo, Pellegrino Giovanni, Porcaro Camillo, Melgari Jean Marc, Rossini Paolo Maria, Tecchio Franca

机构信息

Department of Clinical Neurology, University Campus Bio-Medico, Rome, Italy.

出版信息

Hum Brain Mapp. 2014 Apr;35(4):1740-9. doi: 10.1002/hbm.22288. Epub 2013 May 14.

Abstract

Brain effective connectivity can be tracked by cerebral recruitments evoked by transcranial magnetic stimulation (TMS), as measured by simultaneous electroencephalography (TMS-EEG). When TMS is targeting the primary motor area, motor evoked potentials (MEPs) can be collected from the "target" muscles. The aim of this study was to measure whether or not effective brain connectivity changes with the excitability level of the corticospinal motor pathway (CSMP) as parameterized by MEP amplitude. After averaging two subgroups of EEG-evoked responses corresponding to high and low MEP amplitudes, we calculated the individual differences between them and submitted the grand average to sLORETA algorithm obtaining localized regions of interest (RoIs). Statistical differences of RoI recruitment strength between low and high CSMP excitation was assessed in single subjects. Preceding the feedback arrival, neural recruitment for stronger CSMP activation were weaker at 6-10 ms of homotopic sensorimotor areas BA3/4/5 of the right nonstimulated hemisphere (trend), weaker at 18-25 ms of left parietal BA2/3/40, and stronger at 26-32 ms of bilateral frontal motor areas BA6/8. The proposed method enables the tracking of brain network connectivity during stimulation of one node by measuring the strength of the connected recruited node activations. Spontaneous increases of the excitation of the node originating the transmission within the hand control network gave rise to dynamic recruitment patterns with opposite behaviors, weaker in homotopic and parietal circuits, stronger in frontal ones. The effective connectivity within bilateral circuits orchestrating hand control appeared dynamically modulated in time even in resting state as probed by TMS.

摘要

脑有效连接性可通过经颅磁刺激(TMS)诱发的大脑募集来追踪,这是通过同步脑电图(TMS - EEG)来测量的。当TMS靶向初级运动区时,可以从“目标”肌肉收集运动诱发电位(MEP)。本研究的目的是测量有效脑连接性是否会随着以MEP幅度参数化的皮质脊髓运动通路(CSMP)的兴奋性水平而变化。在对对应于高MEP幅度和低MEP幅度的两个脑电图诱发反应亚组进行平均后,我们计算了它们之间的个体差异,并将总体平均值提交给sLORETA算法以获得局部感兴趣区域(RoI)。在单受试者中评估了低CSMP兴奋和高CSMP兴奋之间RoI募集强度的统计学差异。在反馈到达之前,对于更强的CSMP激活,右侧未受刺激半球的同型感觉运动区BA3/4/5在6 - 10毫秒时神经募集较弱(趋势),左侧顶叶BA2/3/40在18 - 25毫秒时较弱,双侧额叶运动区BA6/8在26 - 32毫秒时较强。所提出的方法能够通过测量相连募集节点激活的强度来追踪在刺激一个节点期间的脑网络连接性。在手部控制网络内发起传输的节点兴奋的自发增加产生了具有相反行为的动态募集模式,在同型和顶叶回路中较弱,在额叶回路中较强。即使在静息状态下,通过TMS探测发现,协调手部控制的双侧回路内的有效连接性在时间上也呈现动态调制。

相似文献

1
The spontaneous fluctuation of the excitability of a single node modulates the internodes connectivity: a TMS-EEG study.
Hum Brain Mapp. 2014 Apr;35(4):1740-9. doi: 10.1002/hbm.22288. Epub 2013 May 14.
2
The influence of corticospinal activity on TMS-evoked activity and connectivity in healthy subjects: A TMS-EEG study.
PLoS One. 2017 Apr 6;12(4):e0174879. doi: 10.1371/journal.pone.0174879. eCollection 2017.
4
EEG-triggered TMS reveals stronger brain state-dependent modulation of motor evoked potentials at weaker stimulation intensities.
Brain Stimul. 2019 Jan-Feb;12(1):110-118. doi: 10.1016/j.brs.2018.09.009. Epub 2018 Sep 21.
6
EEG oscillations and magnetically evoked motor potentials reflect motor system excitability in overlapping neuronal populations.
Clin Neurophysiol. 2010 Apr;121(4):492-501. doi: 10.1016/j.clinph.2009.11.078. Epub 2010 Jan 21.
8
Network connectivity and individual responses to brain stimulation in the human motor system.
Cereb Cortex. 2014 Jul;24(7):1697-707. doi: 10.1093/cercor/bht023. Epub 2013 Feb 8.
9
Human brain cortical correlates of short-latency afferent inhibition: a combined EEG-TMS study.
J Neurophysiol. 2012 Jul;108(1):314-23. doi: 10.1152/jn.00796.2011. Epub 2012 Mar 28.

引用本文的文献

2
The Functional Anatomy of Nociception: Effective Connectivity in Chronic Pain and Placebo Response.
J Neurosci. 2025 Jun 18;45(25):e1447242025. doi: 10.1523/JNEUROSCI.1447-24.2025.
4
High-Performance Magnetic-core Coils for Targeted Rodent Brain Stimulations.
BME Front. 2022 Mar 5;2022:9854846. doi: 10.34133/2022/9854846. eCollection 2022.
5
Auditory white noise exposure results in intrinsic cortical excitability changes.
iScience. 2023 Jul 17;26(8):107387. doi: 10.1016/j.isci.2023.107387. eCollection 2023 Aug 18.
6
Whole body vibration accelerates the functional recovery of motor nerve components in sciatic nerve-crush injury model rats.
J Exerc Rehabil. 2023 Jun 28;19(3):149-162. doi: 10.12965/jer.2346178.089. eCollection 2023 Jun.
7
Brain Connectivity Signature Extractions from TMS Invoked EEGs.
Sensors (Basel). 2023 Apr 18;23(8):4078. doi: 10.3390/s23084078.
8
Editorial: Combined EEG in research and diagnostics: Novel perspectives and improvements.
Front Neurosci. 2023 Feb 16;17:1152394. doi: 10.3389/fnins.2023.1152394. eCollection 2023.
9
Hierarchical Bayesian modeling of the relationship between task-related hemodynamic responses and cortical excitability.
Hum Brain Mapp. 2023 Feb 15;44(3):876-900. doi: 10.1002/hbm.26107. Epub 2022 Oct 17.
10
Stimulation with acoustic white noise enhances motor excitability and sensorimotor integration.
Sci Rep. 2022 Jul 30;12(1):13108. doi: 10.1038/s41598-022-17055-9.

本文引用的文献

1
Inhibitory deficits in the dorsolateral prefrontal cortex in psychopathic offenders.
Cortex. 2013 May;49(5):1377-85. doi: 10.1016/j.cortex.2012.06.003. Epub 2012 Jun 23.
2
Spectral fingerprints of large-scale neuronal interactions.
Nat Rev Neurosci. 2012 Jan 11;13(2):121-34. doi: 10.1038/nrn3137.
3
Projecting out muscle artifacts from TMS-evoked EEG.
Neuroimage. 2011 Feb 14;54(4):2706-10. doi: 10.1016/j.neuroimage.2010.11.041. Epub 2010 Nov 18.
4
Associative cortico-cortical plasticity may affect ipsilateral finger opposition movements.
Behav Brain Res. 2011 Jan 1;216(1):433-9. doi: 10.1016/j.bbr.2010.08.037. Epub 2010 Sep 9.
5
The role of the corpus callosum in transcranial magnetic stimulation induced interhemispheric signal propagation.
Biol Psychiatry. 2010 Nov 1;68(9):825-31. doi: 10.1016/j.biopsych.2010.06.021. Epub 2010 Aug 12.
6
Human brain connectivity during single and paired pulse transcranial magnetic stimulation.
Neuroimage. 2011 Jan 1;54(1):90-102. doi: 10.1016/j.neuroimage.2010.07.056. Epub 2010 Aug 1.
7
The relationship between peripheral and early cortical activation induced by transcranial magnetic stimulation.
Neurosci Lett. 2010 Jun 30;478(1):24-8. doi: 10.1016/j.neulet.2010.04.059. Epub 2010 Apr 29.
8
EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable over time.
PLoS One. 2010 Apr 22;5(4):e10281. doi: 10.1371/journal.pone.0010281.
9
Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research.
Clin Neurophysiol. 2009 Dec;120(12):2008-2039. doi: 10.1016/j.clinph.2009.08.016. Epub 2009 Oct 14.
10
General indices to characterize the electrical response of the cerebral cortex to TMS.
Neuroimage. 2010 Jan 15;49(2):1459-68. doi: 10.1016/j.neuroimage.2009.09.026. Epub 2009 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验