Cárdenas-Morales Lizbeth, Volz Lukas J, Michely Jochen, Rehme Anne K, Pool Eva-Maria, Nettekoven Charlotte, Eickhoff Simon B, Fink Gereon R, Grefkes Christian
Neuromodulation and Neurorehabilitation, Max Planck Institute for Neurological Research, 50931 Cologne, Germany, Department of Neurology, Cologne University Hospital, 50924 Cologne, Germany.
Neuromodulation and Neurorehabilitation, Max Planck Institute for Neurological Research, 50931 Cologne, Germany.
Cereb Cortex. 2014 Jul;24(7):1697-707. doi: 10.1093/cercor/bht023. Epub 2013 Feb 8.
The mechanisms driving cortical plasticity in response to brain stimulation are still incompletely understood. We here explored whether neural activity and connectivity in the motor system relate to the magnitude of cortical plasticity induced by repetitive transcranial magnetic stimulation (rTMS). Twelve right-handed volunteers underwent functional magnetic resonance imaging during rest and while performing a simple hand motor task. Resting-state functional connectivity, task-induced activation, and task-related effective connectivity were assessed for a network of key motor areas. We then investigated the effects of intermittent theta-burst stimulation (iTBS) on motor-evoked potentials (MEP) for up to 25 min after stimulation over left primary motor cortex (M1) or parieto-occipital vertex (for control). ITBS-induced increases in MEP amplitudes correlated negatively with movement-related fMRI activity in left M1. Control iTBS had no effect on M1 excitability. Subjects with better response to M1-iTBS featured stronger preinterventional effective connectivity between left premotor areas and left M1. In contrast, resting-state connectivity did not predict iTBS aftereffects. Plasticity-related changes in M1 following brain stimulation seem to depend not only on local factors but also on interconnected brain regions. Predominantly activity-dependent properties of the cortical motor system are indicative of excitability changes following induction of cortical plasticity with rTMS.
大脑对脑刺激产生反应时驱动皮质可塑性的机制仍未完全明确。我们在此探究运动系统中的神经活动和连接性是否与重复经颅磁刺激(rTMS)诱导的皮质可塑性程度相关。12名右利手志愿者在静息状态以及执行简单手部运动任务时接受了功能磁共振成像检查。对关键运动区域网络评估了静息态功能连接性、任务诱导激活以及任务相关的有效连接性。然后,我们在左侧初级运动皮层(M1)或顶枕叶顶点(作为对照)进行刺激后长达25分钟的时间内,研究了间歇性theta爆发刺激(iTBS)对运动诱发电位(MEP)的影响。iTBS诱导的MEP幅度增加与左侧M1中与运动相关的功能磁共振成像活动呈负相关。对照性iTBS对M1兴奋性无影响。对M1 - iTBS反应较好的受试者在干预前左侧运动前区和左侧M1之间具有更强的有效连接性。相比之下,静息态连接性并不能预测iTBS的后效应。脑刺激后M1中与可塑性相关的变化似乎不仅取决于局部因素,还取决于相互连接的脑区。皮质运动系统主要依赖活动的特性表明了rTMS诱导皮质可塑性后兴奋性的变化。