Department of Animal Physiology, University of Kassel, Kassel, Germany.
PLoS One. 2013 May 3;8(5):e62648. doi: 10.1371/journal.pone.0062648. Print 2013.
The mechanisms of insect odor transduction are still controversial. Insect odorant receptors (ORs) are 7TM receptors with inverted membrane topology. They colocalize with a conserved coreceptor (Orco) with chaperone and ion channel function. Some studies suggest that insects employ exclusively ionotropic odor transduction via OR-Orco heteromers. Other studies provide evidence for different metabotropic odor transduction cascades, which employ second messenger-gated ion channel families for odor transduction. The hawkmoth Manduca sexta is an established model organism for studies of insect olfaction, also due to the availability of the hawkmoth-specific pheromone blend with its main component bombykal. Previous patch-clamp studies on primary cell cultures of M. sexta olfactory receptor neurons provided evidence for a pheromone-dependent activation of a phospholipase Cβ. Pheromone application elicited a sequence of one rapid, apparently IP3-dependent, transient and two slower Ca(2+)-dependent inward currents. It remains unknown whether additionally an ionotropic pheromone-transduction mechanism is employed. If indeed an OR-Orco ion channel complex underlies an ionotropic mechanism, then Orco agonist-dependent opening of the OR-Orco channel pore should add up to pheromone-dependent opening of the pore. Here, in tip-recordings from intact pheromone-sensitive sensilla, perfusion with the Orco agonist VUAA1 did not increase pheromone-responses within the first 1000 ms. However, VUAA1 increased spontaneous activity of olfactory receptor neurons Zeitgebertime- and dose-dependently. We conclude that we find no evidence for an Orco-dependent ionotropic pheromone transduction cascade in M. sexta. Instead, in M. sexta Orco appears to be a slower, second messenger-dependent pacemaker channel which affects kinetics and threshold of pheromone-detection via changes of intracellular Ca(2+) baseline concentrations.
昆虫气味转导的机制仍存在争议。昆虫气味受体 (ORs) 是具有反转膜拓扑结构的 7TM 受体。它们与具有伴侣和离子通道功能的保守核心受体 (Orco) 共定位。一些研究表明,昆虫仅通过 OR-Orco 异源三聚体进行离子型气味转导。其他研究则提供了不同代谢型气味转导级联的证据,这些级联使用第二信使门控离子通道家族进行气味转导。天蚕蛾 Manduca sexta 是昆虫嗅觉研究的一种成熟模式生物,这也是由于它具有特定的天蚕蛾信息素混合物及其主要成分 bombykal。以前对 M. sexta 嗅觉感觉神经元的原代细胞培养进行的膜片钳研究提供了证据,证明了一种依赖于信息素的磷脂酶 Cβ 的激活。信息素的应用引发了一系列快速、显然依赖于 IP3 的短暂和两个较慢的 Ca(2+)依赖性内向电流。目前尚不清楚是否还采用了离子型信息素转导机制。如果确实存在一个 OR-Orco 离子通道复合物作为离子型机制的基础,那么 Orco 激动剂依赖性的 OR-Orco 通道孔的打开应该与信息素依赖性的孔的打开相加。在这里,在完整的对信息素敏感的感觉感受器的尖端记录中,用 Orco 激动剂 VUAA1 灌注在最初的 1000ms 内并没有增加信息素反应。然而,VUAA1 以 Zeitgebertime 和剂量依赖的方式增加了嗅觉感觉神经元的自发活性。我们的结论是,我们没有发现 M. sexta 中存在 Orco 依赖性的离子型信息素转导级联的证据。相反,在 M. sexta 中,Orco 似乎是一个较慢的、第二信使依赖性的起搏通道,通过改变细胞内 Ca(2+)基础浓度来影响信息素检测的动力学和阈值。