Ray Ishani, Mohanty Smita
Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States.
J Agric Food Chem. 2025 Sep 3;73(35):21701-21727. doi: 10.1021/acs.jafc.5c03663. Epub 2025 Aug 21.
Insects utilize sophisticated olfactory systems to detect chemical cues critical for behaviors such as mating, host selection, and predator avoidance. In lepidopteran moths, sex pheromone communication offers a well-established model in which males detect female-emitted signals over long distances. Central to this process are pheromone-binding proteins (PBPs), which solubilize and transport hydrophobic pheromones through the sensillar lymph to olfactory receptors, enabling precise signal detection. Recent advances in molecular biology, structural biochemistry, and gene-editing technologies such as CRISPR/Cas9 have uncovered nuanced mechanisms underlying PBP function, including ligand-binding specificity, pH-dependent conformational dynamics, and molecular interactions. These discoveries have broad implications, extending beyond chemosensory biology to applications in reverse chemical ecology, biosensing, and environmentally conscious pest control. This review synthesizes insights from , , and studies, highlighting the structural and functional diversity of PBPs across species and emphasizing their translational utility as molecular targets for sustainable agriculture and biodiversity conservation.
昆虫利用复杂的嗅觉系统来检测对交配、宿主选择和躲避捕食者等行为至关重要的化学信号。在鳞翅目蛾类中,性信息素通讯提供了一个成熟的模型,其中雄性能够远距离检测雌性发出的信号。这一过程的核心是信息素结合蛋白(PBPs),它们通过感器淋巴溶解并运输疏水性信息素至嗅觉受体,从而实现精确的信号检测。分子生物学、结构生物化学以及CRISPR/Cas9等基因编辑技术的最新进展揭示了PBP功能背后的细微机制,包括配体结合特异性、pH依赖性构象动力学以及分子相互作用。这些发现具有广泛的意义,不仅超越了化学感应生物学,还延伸至反向化学生态学、生物传感以及注重环境的害虫控制等应用领域。本综述综合了[具体文献1]、[具体文献2]和[具体文献3]研究中的见解,突出了不同物种间PBP的结构和功能多样性,并强调了它们作为可持续农业和生物多样性保护分子靶点的转化应用价值。