Suppr超能文献

癌症恶病质降低肢体肌肉的比肌力并加速疲劳。

Cancer cachexia decreases specific force and accelerates fatigue in limb muscle.

机构信息

1225 Center Drive, HPNP Building Room 1142, Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA.

出版信息

Biochem Biophys Res Commun. 2013 Jun 7;435(3):488-92. doi: 10.1016/j.bbrc.2013.05.018. Epub 2013 May 11.

Abstract

Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative soleus is also important for normal locomotion, we further performed a fatigue trial in the soleus and found that the decrease in relative force was greater and more rapid in solei from C-26 mice compared to controls. These data demonstrate that severe cancer cachexia causes profound muscle weakness that is not entirely explained by the muscle atrophy. In addition, cancer cachexia decreases the fatigue resistance of the soleus muscle, a postural muscle typically resistant to fatigue. Thus, specifically targeting contractile dysfunction represents an additional means to counter muscle weakness in cancer cachexia, in addition to targeting the prevention of muscle atrophy.

摘要

癌症恶病质是一种复杂的代谢综合征,其特征是骨骼肌质量和力量的丧失,这会影响身体功能,降低生活质量,并最终导致死亡。癌症恶病质的实验模型已经再现了这种骨骼肌萎缩和随之而来的肌肉力量产生能力下降。然而,最近我们提供的证据表明,在严重的癌症恶病质中,膈肌的肌肉无力不能完全归因于肌肉萎缩。这表明肌肉无力不仅仅是肌肉萎缩的结果,还存在明显的收缩功能障碍。本研究旨在通过研究糖酵解伸趾长肌(EDL)和氧化比目鱼肌来确定在严重结肠-26(C26)癌恶病质中,四肢肌肉是否也存在收缩功能障碍,因为比目鱼肌的活动模式更类似于膈肌。严重的 C-26 癌症恶病质导致 EDL 和比目鱼肌的肌纤维明显萎缩和最大绝对力减少。然而,归一化到肌肉横截面积进一步表明 EDL 的最大等长比肌力降低了 13%,比目鱼肌的最大等长比肌力降低甚至更大(17%)。EDL 和比目鱼肌的峰值张力时间和半松弛时间也显著减慢。由于除了姿势控制外,氧化比目鱼肌对于正常运动也很重要,我们进一步在比目鱼肌中进行了疲劳试验,发现与对照组相比,C-26 小鼠的比目鱼肌的相对力下降更大且更快。这些数据表明,严重的癌症恶病质导致严重的肌肉无力,而不仅仅是由肌肉萎缩引起的。此外,癌症恶病质降低了比目鱼肌的抗疲劳能力,而比目鱼肌通常是耐疲劳的。因此,除了针对肌肉萎缩的预防外,专门针对收缩功能障碍是对抗癌症恶病质肌肉无力的另一种手段。

相似文献

1
Cancer cachexia decreases specific force and accelerates fatigue in limb muscle.
Biochem Biophys Res Commun. 2013 Jun 7;435(3):488-92. doi: 10.1016/j.bbrc.2013.05.018. Epub 2013 May 11.
2
Diaphragm and ventilatory dysfunction during cancer cachexia.
FASEB J. 2013 Jul;27(7):2600-10. doi: 10.1096/fj.12-222844. Epub 2013 Mar 20.
3
Cancer-induced muscle atrophy is determined by intrinsic muscle oxidative capacity.
FASEB J. 2021 Jul;35(7):e21714. doi: 10.1096/fj.202100263R.
4
Voluntary exercise does not improve muscular properties or functional capacity during C26-induced cancer cachexia in mice.
J Muscle Res Cell Motil. 2021 Jun;42(2):169-181. doi: 10.1007/s10974-021-09599-6. Epub 2021 Feb 19.
5
Differential effects of pre-exercise on cancer cachexia-induced muscle atrophy in fast- and slow-twitch muscles.
FASEB J. 2020 Nov;34(11):14389-14406. doi: 10.1096/fj.202001330R. Epub 2020 Sep 5.
6
Deficiency of slow skeletal muscle troponin T causes atrophy of type I slow fibres and decreases tolerance to fatigue.
J Physiol. 2014 Mar 15;592(6):1367-80. doi: 10.1113/jphysiol.2013.268177. Epub 2014 Jan 20.
9
Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice.
Am J Physiol Regul Integr Comp Physiol. 2011 Sep;301(3):R716-26. doi: 10.1152/ajpregu.00121.2011. Epub 2011 Jun 15.
10
Continuous testosterone administration prevents skeletal muscle atrophy and enhances resistance to fatigue in orchidectomized male mice.
Am J Physiol Endocrinol Metab. 2006 Sep;291(3):E506-16. doi: 10.1152/ajpendo.00058.2006. Epub 2006 Apr 18.

引用本文的文献

1
Comprehensive review of mouse models for studying cancer-related fatigue: Methods, findings and future directions (Review).
Exp Ther Med. 2025 Jul 21;30(3):178. doi: 10.3892/etm.2025.12928. eCollection 2025 Sep.
2
Delivery of A Chemically Modified Noncoding RNA Domain Improves Dystrophic Myotube Function.
Adv Sci (Weinh). 2025 May;12(20):e2410908. doi: 10.1002/advs.202410908. Epub 2025 Feb 17.
3
Unacylated Ghrelin Protects Against Age-Related Loss of Muscle Mass and Contractile Dysfunction in Skeletal Muscle.
Aging Cell. 2024 Dec;23(12):e14323. doi: 10.1111/acel.14323. Epub 2024 Sep 2.
6
Skeletal muscle adaptations in patients with lung cancer: Longitudinal observations from the whole body to cellular level.
J Cachexia Sarcopenia Muscle. 2023 Dec;14(6):2579-2590. doi: 10.1002/jcsm.13332. Epub 2023 Sep 19.
8
Impact of cancer cachexia on respiratory muscle function and the therapeutic potential of exercise.
J Physiol. 2022 Dec;600(23):4979-5004. doi: 10.1113/JP283569. Epub 2022 Nov 1.
9
Metabolomics studies on cachexia in patients with cancer: a scoping review protocol.
BMJ Open. 2022 Apr 12;12(4):e052125. doi: 10.1136/bmjopen-2021-052125.
10
Skeletal muscle-specific overexpression of miR-486 limits mammary tumor-induced skeletal muscle functional limitations.
Mol Ther Nucleic Acids. 2022 Mar 16;28:231-248. doi: 10.1016/j.omtn.2022.03.009. eCollection 2022 Jun 14.

本文引用的文献

1
Diaphragm and ventilatory dysfunction during cancer cachexia.
FASEB J. 2013 Jul;27(7):2600-10. doi: 10.1096/fj.12-222844. Epub 2013 Mar 20.
2
Importance of functional and metabolic impairments in the characterization of the C-26 murine model of cancer cachexia.
Dis Model Mech. 2012 Jul;5(4):533-45. doi: 10.1242/dmm.008839. Epub 2012 Mar 22.
3
Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy.
FASEB J. 2012 Mar;26(3):987-1000. doi: 10.1096/fj.11-189977. Epub 2011 Nov 18.
4
Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice.
Am J Physiol Regul Integr Comp Physiol. 2011 Sep;301(3):R716-26. doi: 10.1152/ajpregu.00121.2011. Epub 2011 Jun 15.
5
Effectiveness of sulfur-containing antioxidants in delaying skeletal muscle fatigue.
Med Sci Sports Exerc. 2011 Jun;43(6):1025-31. doi: 10.1249/MSS.0b013e3182019a78.
7
Sphingomyelinase stimulates oxidant signaling to weaken skeletal muscle and promote fatigue.
Am J Physiol Cell Physiol. 2010 Sep;299(3):C552-60. doi: 10.1152/ajpcell.00065.2010. Epub 2010 Jun 2.
8
Doxorubicin acts through tumor necrosis factor receptor subtype 1 to cause dysfunction of murine skeletal muscle.
J Appl Physiol (1985). 2009 Dec;107(6):1935-42. doi: 10.1152/japplphysiol.00776.2009. Epub 2009 Sep 24.
9
Cachexia: a new definition.
Clin Nutr. 2008 Dec;27(6):793-9. doi: 10.1016/j.clnu.2008.06.013. Epub 2008 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验