Laboratoire de Minéralogie et de Cosmochimie du Muséum, Muséum National d'Histoire Naturelle, Paris, France.
mBio. 2013 May 14;4(3):e00052-13. doi: 10.1128/mBio.00052-13.
Metabolic interactions with endosymbiotic photosynthetic dinoflagellate Symbiodinium spp. are fundamental to reef-building corals (Scleractinia) thriving in nutrient-poor tropical seas. Yet, detailed understanding at the single-cell level of nutrient assimilation, translocation, and utilization within this fundamental symbiosis is lacking. Using pulse-chase (15)N labeling and quantitative ion microprobe isotopic imaging (NanoSIMS; nanoscale secondary-ion mass spectrometry), we visualized these dynamic processes in tissues of the symbiotic coral Pocillopora damicornis at the subcellular level. Assimilation of ammonium, nitrate, and aspartic acid resulted in rapid incorporation of nitrogen into uric acid crystals (after ~45 min), forming temporary N storage sites within the dinoflagellate endosymbionts. Subsequent intracellular remobilization of this metabolite was accompanied by translocation of nitrogenous compounds to the coral host, starting at ~6 h. Within the coral tissue, nitrogen is utilized in specific cellular compartments in all four epithelia, including mucus chambers, Golgi bodies, and vesicles in calicoblastic cells. Our study shows how nitrogen-limited symbiotic corals take advantage of sudden changes in nitrogen availability; this opens new perspectives for functional studies of nutrient storage and remobilization in microbial symbioses in changing reef environments.
The methodology applied, combining transmission electron microscopy with nanoscale secondary-ion mass spectrometry (NanoSIMS) imaging of coral tissue labeled with stable isotope tracers, allows quantification and submicrometric localization of metabolic fluxes in an intact symbiosis. This study opens the way for investigations of physiological adaptations of symbiotic systems to nutrient availability and for increasing knowledge of global nitrogen and carbon biogeochemical cycling.
与共生光合甲藻 Symbiodinium spp 的代谢相互作用是在营养贫乏的热带海域中繁荣的造礁珊瑚(Scleractinia)的基础。然而,在这种基本共生关系中,对营养物质同化、转运和利用的单细胞水平的详细了解还很缺乏。本文使用脉冲追踪(15)N 标记和定量离子探针同位素成像(NanoSIMS;纳米级二次离子质谱),在共生珊瑚 P. damicornis 的组织中以亚细胞水平可视化了这些动态过程。铵、硝酸盐和天冬氨酸的同化导致氮迅速掺入尿酸晶体中(约 45 分钟后),在共生甲藻内形成临时氮储存位点。随后,这种代谢物的细胞内再动员伴随着含氮化合物向珊瑚宿主的转运,大约在 6 小时开始。在珊瑚组织中,氮在所有四个上皮细胞的特定细胞区室中被利用,包括粘液室、高尔基氏体和钙造细胞中的囊泡。我们的研究表明,氮限制的共生珊瑚如何利用氮供应的突然变化;这为研究变化中的珊瑚礁环境中微生物共生体中营养物质储存和再动员的功能提供了新的视角。
应用的方法,结合透射电子显微镜和稳定同位素示踪剂标记的珊瑚组织的纳米级二次离子质谱成像(NanoSIMS),允许在完整共生体中对代谢通量进行定量和亚微米定位。这项研究为研究共生系统对营养物质可用性的生理适应以及增加对全球氮和碳生物地球化学循环的了解开辟了道路。