Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, Canada.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W591-6. doi: 10.1093/nar/gkt400. Epub 2013 May 15.
Screening genome-wide sets of mutants for fitness defects provides a simple but powerful approach for exploring gene function, mapping genetic networks and probing mechanisms of drug action. For yeast and other microorganisms with global mutant collections, genetic or chemical-genetic interactions can be effectively quantified by growing an ordered array of strains on agar plates as individual colonies, and then scoring the colony size changes in response to a genetic or environmental perturbation. To do so, requires efficient tools for the extraction and analysis of quantitative data. Here, we describe SGAtools (http://sgatools.ccbr.utoronto.ca), a web-based analysis system for designer genetic screens. SGAtools outlines a series of guided steps that allow the user to quantify colony sizes from images of agar plates, correct for systematic biases in the observations and calculate a fitness score relative to a control experiment. The data can also be visualized online to explore the colony sizes on individual plates, view the distribution of resulting scores, highlight genes with the strongest signal and perform Gene Ontology enrichment analysis.
对全基因组突变体进行筛选以寻找适合度缺陷为探索基因功能、绘制遗传网络和研究药物作用机制提供了一种简单而强大的方法。对于具有全局突变体集合的酵母和其他微生物,可以通过在琼脂平板上以单个菌落的形式生长有序的菌株阵列,并对遗传或环境扰动的菌落大小变化进行评分,从而有效地量化遗传或化学遗传相互作用。要做到这一点,需要有效的工具来提取和分析定量数据。在这里,我们描述了 SGAtools(http://sgatools.ccbr.utoronto.ca),这是一个用于设计遗传筛选的基于网络的分析系统。SGAtools 概述了一系列引导步骤,允许用户从琼脂平板的图像中量化菌落大小,对观察结果中的系统偏差进行校正,并相对于对照实验计算适合度得分。还可以在线可视化数据,以探索单个平板上的菌落大小,查看结果得分的分布,突出信号最强的基因,并进行基因本体论富集分析。