Suppr超能文献

相似文献

1
Quantitative analysis of fitness and genetic interactions in yeast on a genome scale.
Nat Methods. 2010 Dec;7(12):1017-24. doi: 10.1038/nmeth.1534. Epub 2010 Nov 14.
2
Genome-Wide Quantitative Fitness Analysis (QFA) of Yeast Cultures.
Methods Mol Biol. 2018;1672:575-597. doi: 10.1007/978-1-4939-7306-4_38.
3
Synthetic genetic array analysis for global mapping of genetic networks in yeast.
Methods Mol Biol. 2014;1205:143-68. doi: 10.1007/978-1-4939-1363-3_10.
4
Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe.
Methods Enzymol. 2010;470:145-79. doi: 10.1016/S0076-6879(10)70007-0. Epub 2010 Mar 1.
5
Trigenic Synthetic Genetic Array (τ-SGA) Technique for Complex Interaction Analysis.
Methods Mol Biol. 2021;2212:377-400. doi: 10.1007/978-1-0716-0947-7_23.
6
τ-SGA: synthetic genetic array analysis for systematically screening and quantifying trigenic interactions in yeast.
Nat Protoc. 2021 Feb;16(2):1219-1250. doi: 10.1038/s41596-020-00456-3. Epub 2021 Jan 18.
8
Global linkage map connects meiotic centromere function to chromosome size in budding yeast.
G3 (Bethesda). 2013 Oct 3;3(10):1741-51. doi: 10.1534/g3.113.007377.
10
SGAM: an array-based approach for high-resolution genetic mapping in Saccharomyces cerevisiae.
Methods Mol Biol. 2009;548:37-53. doi: 10.1007/978-1-59745-540-4_3.

引用本文的文献

2
Positive genetic interactions: high impact, but underrepresented in the literature.
bioRxiv. 2025 Jun 27:2025.06.25.661621. doi: 10.1101/2025.06.25.661621.
3
AlphaDesign: a de novo protein design framework based on AlphaFold.
Mol Syst Biol. 2025 Jun 17. doi: 10.1038/s44320-025-00119-z.
4
A mathematical framework for the quantitative analysis of genetic buffering.
PLoS Genet. 2025 Jun 10;21(6):e1011730. doi: 10.1371/journal.pgen.1011730. eCollection 2025 Jun.
5
Worm Perturb-Seq: massively parallel whole-animal RNAi and RNA-seq.
Nat Commun. 2025 May 23;16(1):4785. doi: 10.1038/s41467-025-60154-0.
6
Worm Perturb-Seq: massively parallel whole-animal RNAi and RNA-seq.
bioRxiv. 2025 Feb 3:2025.02.02.636107. doi: 10.1101/2025.02.02.636107.
7
Resolving discrepancies between chimeric and multiplicative measures of higher-order epistasis.
Nat Commun. 2025 Feb 17;16(1):1711. doi: 10.1038/s41467-025-56986-5.
8
Simplicity within biological complexity.
Bioinform Adv. 2025 Feb 6;5(1):vbae164. doi: 10.1093/bioadv/vbae164. eCollection 2025.
9
10
Genome-wide conditional degron libraries for functional genomics.
J Cell Biol. 2025 Feb 3;224(2). doi: 10.1083/jcb.202409007. Epub 2024 Dec 18.

本文引用的文献

1
Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe.
Methods Enzymol. 2010;470:145-79. doi: 10.1016/S0076-6879(10)70007-0. Epub 2010 Mar 1.
2
Tackling the widespread and critical impact of batch effects in high-throughput data.
Nat Rev Genet. 2010 Oct;11(10):733-9. doi: 10.1038/nrg2825. Epub 2010 Sep 14.
3
Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks.
Nat Genet. 2010 Mar;42(3):272-6. doi: 10.1038/ng.524. Epub 2010 Jan 24.
4
The genetic landscape of a cell.
Science. 2010 Jan 22;327(5964):425-31. doi: 10.1126/science.1180823.
6
Systematic mapping of genetic interaction networks.
Annu Rev Genet. 2009;43:601-25. doi: 10.1146/annurev.genet.39.073003.114751.
7
Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes.
Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16653-8. doi: 10.1073/pnas.0806261105. Epub 2008 Oct 17.
8
Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast.
Science. 2008 Oct 17;322(5900):405-10. doi: 10.1126/science.1162609. Epub 2008 Sep 25.
10
High-quality binary protein interaction map of the yeast interactome network.
Science. 2008 Oct 3;322(5898):104-10. doi: 10.1126/science.1158684. Epub 2008 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验