Sanon Saurabh, Lee Vei-Vei, Elayda MacArthur A, Gondi Sreedevi, Livesay James J, Reul George J, Wilson James M
Division of Cardiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA.
Tex Heart Inst J. 2013;40(2):156-62.
Preoperative risk-prediction models are an important tool in contemporary surgical practice. We developed a risk-scoring technique for predicting in-hospital death for cardiovascular surgery patients. From our institutional database, we obtained data on 21,120 patients admitted from 1995 through 2007. The outcome of interest was early death (in-hospital or within 30 days of surgery). To identify mortality predictors, multivariate logistic regression was performed on data from 14,030 patients from 1995 through 2002 and risk scores were computed to stratify patients (low-, medium-, and high-risk). A recalibrated model was then created from the original risk scores and validated on data from 7,090 patients from 2003 through 2007. Significant predictors of death included urgent surgery within 48 hours of admission, advanced age, renal insufficiency, repeat coronary artery bypass grafting, repeat aortic aneurysm repair, concomitant aortic aneurysm or left ventricular aneurysm repair with coronary bypass or valvular surgery, and preoperative intra-aortic balloon pump support. Because the original model overpredicted death for operations performed from 2003 through 2007, this was adjusted for by applying the recalibrated model. Applying the recalibrated model to the validation set revealed predicted mortality rates of 1.7%, 4.2%, and 13.4% and observed rates of 1.1%, 5.1%, and 13%, respectively. Because our model discriminates risk groups by using preoperative clinical criteria alone, it can be a useful bedside tool for identifying patients at greater risk of early death after cardiovascular surgery, thereby facilitating clinical decision-making. The model can be recalibrated for use in other types of patient populations.
术前风险预测模型是当代外科手术实践中的一项重要工具。我们开发了一种风险评分技术,用于预测心血管手术患者的院内死亡情况。从我们的机构数据库中,我们获取了1995年至2007年收治的21120例患者的数据。感兴趣的结局是早期死亡(院内或术后30天内)。为了确定死亡预测因素,对1995年至2002年的14030例患者的数据进行了多因素逻辑回归分析,并计算风险评分以对患者进行分层(低、中、高风险)。然后根据原始风险评分创建了一个重新校准的模型,并在2003年至2007年的7090例患者的数据上进行了验证。死亡的显著预测因素包括入院后48小时内的急诊手术、高龄、肾功能不全、再次冠状动脉搭桥术、再次主动脉瘤修复术、同时进行主动脉瘤或左心室瘤修复术与冠状动脉搭桥术或瓣膜手术,以及术前主动脉内球囊泵支持。由于原始模型对2003年至2007年进行的手术的死亡预测过高,因此通过应用重新校准的模型进行了调整。将重新校准的模型应用于验证集,预测死亡率分别为1.7%、4.2%和13.4%,观察到的死亡率分别为1.1%、5.1%和13%。由于我们的模型仅使用术前临床标准来区分风险组,它可以成为识别心血管手术后早期死亡风险较高患者的有用床边工具,从而促进临床决策。该模型可重新校准以用于其他类型的患者群体。