Suppr超能文献

离子通道肽组装的跨膜控制,以短杆菌肽 A 为例。

Extramembrane control of ion channel peptide assemblies, using alamethicin as an example.

机构信息

Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan.

出版信息

Acc Chem Res. 2013 Dec 17;46(12):2924-33. doi: 10.1021/ar400051f. Epub 2013 May 16.

Abstract

Ion channels allow the influx and efflux of specific ions through a plasma membrane. Many ion channels can sense, for example, the membrane potential (the voltage gaps between the inside and the outside of the membrane), specific ligands such as neurotransmitters, and mechanical tension within the membrane. They modulate cell function in response to these stimuli. Researchers have focused on developing peptide- and non-peptide-based model systems to elucidate ion-channel protein functions and to create artificial sensing systems. In this Account, we employed a typical peptide that forms ion channels,alamethicin, as a model to evaluate our methodologies for controlling the assembly states of channel-forming molecules in membranes. As alamethicin self-assembles in membranes, it prompts channel formation, but number of peptide molecules in these channels is not constant. Using planar-lipid bilayer methods, we monitored the association states of alamethicin in real time. Many ligand-gated, natural-ion channel proteins have large extramembrane domains. As these proteins interact with specific ligands, those conformational alterations in the extramembrane domains are transmitted to the transmembrane, pore-forming domains to open and close the channels. We hypothesized that if we conjugated suitable extramembrane segments to alamethicin, ligand binding to the extramembrane segments could alter the structure of the extramembrane domains and influence the association states or association numbers of alamethicin in the membranes. We could then assess those changes by using single-channel current recording. We found that we could modulate channel assembly and eventual ion flux with attached leucine-zipper extramembrane peptide segments. Using conformationally switchable leucine-zipper extramembrane segments that respond to Fe(3+), we fabricated an artificial Fe(3+)-sensitive ion channel; a decrease in the helical content of the extramembrane segment led to an increase in the channel current. When we added a calmodulin C-terminus segment, we formed a channel that was sensitive to Ca(2+). This result demonstrated that we could prepare artificial channels that were sensitive to specific ligands by adding appropriate extramembrane segments from natural protein motifs that respond to external stimuli. In conclusion, our research points to the possibility of creating tailored sensor or signal transduction systems through the conjugation of a conformationally switchable extramembrane peptide/protein segment to a suitable transmembrane peptide segment.

摘要

离子通道允许特定离子通过质膜流入和流出。许多离子通道可以感知例如膜电位(膜内外的电压差)、特定配体(如神经递质)和膜内的机械张力。它们响应这些刺激来调节细胞功能。研究人员专注于开发基于肽和非肽的模型系统,以阐明离子通道蛋白的功能并创建人工感应系统。在本报告中,我们使用一种形成离子通道的典型肽,即短杆菌肽,作为模型来评估我们控制膜中形成通道的分子组装状态的方法。当短杆菌肽在膜中自组装时,它会引发通道形成,但这些通道中的肽分子数量不是恒定的。使用平面脂质双层方法,我们实时监测短杆菌肽的缔合状态。许多配体门控、天然离子通道蛋白具有大的胞外域。当这些蛋白与特定配体相互作用时,胞外域的这些构象变化会传递到跨膜、形成孔的结构域,以打开和关闭通道。我们假设,如果我们将合适的胞外域片段与短杆菌肽缀合,配体与胞外域片段的结合可以改变胞外域的结构,并影响短杆菌肽在膜中的缔合状态或缔合数量。然后,我们可以通过使用单通道电流记录来评估这些变化。我们发现,我们可以通过附着亮氨酸拉链胞外域肽段来调节通道组装和最终的离子通量。使用响应 Fe(3+)的构象可切换亮氨酸拉链胞外域片段,我们制造了一种人工 Fe(3+)敏感离子通道;胞外域片段的螺旋含量减少会导致通道电流增加。当我们添加钙调蛋白 C 端片段时,我们形成了对 Ca(2+)敏感的通道。这个结果表明,我们可以通过添加来自响应外部刺激的天然蛋白模体的适当胞外域片段,制备对特定配体敏感的人工通道。总之,我们的研究表明,通过将构象可切换的胞外肽/蛋白片段与合适的跨膜肽片段缀合,有可能创建定制的传感器或信号转导系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验