State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Nankai District, Tianjin, People's Republic of China.
Nanotechnology. 2013 Jun 21;24(24):245601. doi: 10.1088/0957-4484/24/24/245601. Epub 2013 May 16.
Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts.
采用生物启发模板技术制备的生物纳米材料代表了一类新型复合材料,在生物医学、电子设备、药物输送和催化等领域有广泛的应用。本研究在交联溶菌酶晶体(CLLCs)的溶剂通道中原位合成了金纳米粒子(AuNPs),无需引入额外的化学试剂或物理处理。通过光显微镜、透射电子显微镜、X 射线衍射和傅里叶变换红外光谱分析对所制备的 AuNPs-蛋白晶体杂化材料进行了表征。具有较窄尺寸分布的小 AuNPs 揭示了溶菌酶晶体多孔结构的限制效应。这些复合材料被证明是高效的多相催化剂,可将 4-硝基苯酚还原为 4-氨基酚。由于 CLLCs 的物理稳定性和宏观尺寸,这些催化剂可以很容易地回收和重复使用至少 20 次。这项工作首次利用 CLLCs 作为固体生物模板来制备可回收的高性能催化剂。