Suppr超能文献

靶向c-MYC的三链形成寡核苷酸增强吉西他滨在人癌小鼠模型中的抗肿瘤活性。

Triplex-forming oligonucleotides targeting c-MYC potentiate the anti-tumor activity of gemcitabine in a mouse model of human cancer.

作者信息

Boulware Stephen B, Christensen Laura A, Thames Howard, Coghlan Lezlee, Vasquez Karen M, Finch Rick A

机构信息

Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, Texas.

出版信息

Mol Carcinog. 2014 Sep;53(9):744-52. doi: 10.1002/mc.22026. Epub 2013 May 16.

Abstract

Antimetabolite chemotherapy remains an essential cancer treatment modality, but often produces only marginal benefit due to the lack of tumor specificity, the development of drug resistance, and the refractoriness of slowly proliferating cells in solid tumors. Here, we report a novel strategy to circumvent the proliferation-dependence of traditional antimetabolite-based therapies. Triplex-forming oligonucleotides (TFOs) were used to target site-specific DNA damage to the human c-MYC oncogene, thereby inducing replication-independent, unscheduled DNA repair synthesis (UDS) preferentially in the TFO-targeted region. The TFO-directed UDS facilitated incorporation of the antimetabolite, gemcitabine (GEM), into the damaged oncogene, thereby potentiating the anti-tumor activity of GEM. Mice bearing COLO 320DM human colon cancer xenografts (containing amplified c-MYC) were treated with a TFO targeted to c-MYC in combination with GEM. Tumor growth inhibition produced by the combination was significantly greater than with either TFO or GEM alone. Specific TFO binding to the genomic c-MYC gene was demonstrated, and TFO-induced DNA damage was confirmed by NBS1 accumulation, supporting a mechanism of enhanced efficacy of GEM via TFO-targeted DNA damage-induced UDS. Thus, coupling antimetabolite chemotherapeutics with a strategy that facilitates selective targeting of cells containing amplification of cancer-relevant genes can improve their activity against solid tumors, while possibly minimizing host toxicity.

摘要

抗代谢物化疗仍然是一种重要的癌症治疗方式,但由于缺乏肿瘤特异性、耐药性的产生以及实体瘤中缓慢增殖细胞的难治性,往往只能产生有限的益处。在此,我们报告了一种新策略,以规避传统抗代谢物疗法对增殖的依赖性。三链形成寡核苷酸(TFOs)被用于靶向人c-MYC癌基因的位点特异性DNA损伤,从而优先在TFO靶向区域诱导非依赖复制的、非程序性DNA修复合成(UDS)。TFO指导的UDS促进了抗代谢物吉西他滨(GEM)掺入受损的癌基因,从而增强了GEM的抗肿瘤活性。用靶向c-MYC的TFO与GEM联合治疗携带COLO 320DM人结肠癌异种移植瘤(含有扩增的c-MYC)的小鼠。联合治疗产生的肿瘤生长抑制明显大于单独使用TFO或GEM。证实了特异性TFO与基因组c-MYC基因的结合,并通过NBS1积累证实了TFO诱导的DNA损伤,支持了通过TFO靶向DNA损伤诱导UDS增强GEM疗效的机制。因此,将抗代谢物化疗药物与一种促进对含有癌症相关基因扩增的细胞进行选择性靶向的策略相结合,可以提高它们对实体瘤的活性,同时可能将宿主毒性降至最低。

相似文献

2
Targeting oncogenes to improve breast cancer chemotherapy.
Cancer Res. 2006 Apr 15;66(8):4089-94. doi: 10.1158/0008-5472.CAN-05-4288.
3
Mucin 5AC Serves as the Nexus for β-Catenin/c-Myc Interplay to Promote Glutamine Dependency During Pancreatic Cancer Chemoresistance.
Gastroenterology. 2022 Jan;162(1):253-268.e13. doi: 10.1053/j.gastro.2021.09.017. Epub 2021 Sep 14.
8
Gambogic acid potentiates gemcitabine induced anticancer activity in non-small cell lung cancer.
Eur J Pharmacol. 2020 Dec 5;888:173486. doi: 10.1016/j.ejphar.2020.173486. Epub 2020 Aug 14.

引用本文的文献

1
Nanoparticle delivery of TFOs is a novel targeted therapy for HER2 amplified breast cancer.
BMC Cancer. 2023 Jul 20;23(1):680. doi: 10.1186/s12885-023-11176-8.
2
Triplex-forming oligonucleotides as an anti-gene technique for cancer therapy.
Front Pharmacol. 2022 Dec 21;13:1007723. doi: 10.3389/fphar.2022.1007723. eCollection 2022.
3
Dynamic alternative DNA structures in biology and disease.
Nat Rev Genet. 2023 Apr;24(4):211-234. doi: 10.1038/s41576-022-00539-9. Epub 2022 Oct 31.
4
DNA-Topology Simplification by Topoisomerases.
Molecules. 2021 Jun 3;26(11):3375. doi: 10.3390/molecules26113375.
6
The past and presence of gene targeting: from chemicals and DNA via proteins to RNA.
Philos Trans R Soc Lond B Biol Sci. 2018 Jun 5;373(1748). doi: 10.1098/rstb.2017.0077.
7
Targeting MYC Dependence by Metabolic Inhibitors in Cancer.
Genes (Basel). 2017 Mar 31;8(4):114. doi: 10.3390/genes8040114.
10
Current Chemotherapy and Potential New Targets in Uterine Leiomyosarcoma.
J Clin Med Res. 2016 Mar;8(3):181-9. doi: 10.14740/jocmr2419w. Epub 2016 Jan 26.

本文引用的文献

1
Triplex technology in studies of DNA damage, DNA repair, and mutagenesis.
Biochimie. 2011 Aug;93(8):1197-208. doi: 10.1016/j.biochi.2011.04.001. Epub 2011 Apr 11.
2
Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair.
Nat Cell Biol. 2007 Jun;9(6):683-90. doi: 10.1038/ncb1599. Epub 2007 May 7.
3
High-affinity triplex-forming oligonucleotide target sequences in mammalian genomes.
Mol Carcinog. 2007 Jan;46(1):15-23. doi: 10.1002/mc.20261.
4
Targeting oncogenes to improve breast cancer chemotherapy.
Cancer Res. 2006 Apr 15;66(8):4089-94. doi: 10.1158/0008-5472.CAN-05-4288.
5
Gemcitabine in the treatment of advanced head and neck cancer.
Clin Oncol (R Coll Radiol). 2005 Sep;17(6):425-9. doi: 10.1016/j.clon.2005.05.006.
6
A census of human cancer genes.
Nat Rev Cancer. 2004 Mar;4(3):177-83. doi: 10.1038/nrc1299.
7
Site-directed recombination via bifunctional PNA-DNA conjugates.
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16695-700. doi: 10.1073/pnas.262556899. Epub 2002 Dec 2.
8
Beyond pancreatic cancer: irinotecan and gemcitabine in solid tumors and hematologic malignancies.
Semin Oncol. 2001 Jun;28(3 Suppl 10):34-43. doi: 10.1053/sonc.2001.22534.
9
Triplex-induced recombination in human cell-free extracts. Dependence on XPA and HsRad51.
J Biol Chem. 2001 May 25;276(21):18018-23. doi: 10.1074/jbc.M011646200. Epub 2001 Feb 27.
10
Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3.
Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4510-5. doi: 10.1073/pnas.081074898. Epub 2001 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验