Suppr超能文献

作者改编与风格转换映射。

Writer adaptation with style transfer mapping.

机构信息

National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Beijing 100190, P.R. China.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2013 Jul;35(7):1773-87. doi: 10.1109/TPAMI.2012.239.

Abstract

Adapting a writer-independent classifier toward the unique handwriting style of a particular writer has the potential to significantly increase accuracy for personalized handwriting recognition. This paper proposes a novel framework of style transfer mapping (STM) for writer adaptation. The STM is a writer-specific class-independent feature transformation which has a closed-form solution. After style transfer mapping, the data of different writers are projected onto a style-free space, where the writer-independent classifier needs no change to classify the transformed data and can achieve significantly higher accuracy. The framework of STM can be combined with different types of classifiers for supervised, unsupervised, and semi-supervised adaptation, where writer-specific data can be either labeled or unlabeled and need not cover all classes. In this paper, we combine STM with the state-of-the-art classifiers for large-category Chinese handwriting recognition: learning vector quantization (LVQ) and modified quadratic discriminant function (MQDF). Experiments on the online Chinese handwriting database CASIA-OLHWDB demonstrate that STM-based adaptation is very efficient and effective in improving classification accuracy. Semi-supervised adaptation achieves the best performance, while unsupervised adaptation is even better than supervised adaptation. On handwritten text data, semi-supervised adaptation achieves error reduction rates 31.95 and 25.00 percent by LVQ and MQDF, respectively.

摘要

将独立于作者的分类器适配到特定作者独特的手写风格,有可能显著提高个性化手写识别的准确性。本文提出了一种新颖的风格迁移映射(STM)框架,用于作者适配。STM 是一种特定于作者的独立于类别的特征转换,具有闭式解。经过风格迁移映射后,不同作者的数据被投射到无风格空间,在此空间中,独立于作者的分类器无需更改即可对转换后的数据进行分类,并可实现显著更高的准确性。STM 框架可与不同类型的分类器结合使用,用于有监督、无监督和半监督适配,其中特定于作者的数据可以是有标签的或无标签的,并且不必涵盖所有类别。在本文中,我们将 STM 与用于大类别中文手写识别的最先进分类器(学习向量量化(LVQ)和修正二次判别函数(MQDF))相结合。在在线中文手写数据库 CASIA-OLHWDB 上的实验表明,基于 STM 的适配在提高分类准确性方面非常有效。半监督适配的性能最佳,而无监督适配甚至优于有监督适配。在手写文本数据上,LVQ 和 MQDF 分别通过半监督适配实现了 31.95%和 25.00%的错误减少率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验