Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
Curr Opin Chem Biol. 2013 Jun;17(3):496-505. doi: 10.1016/j.cbpa.2013.04.007. Epub 2013 May 14.
Microalgae are a promising feedstock for biodiesel and other liquid fuels due to their fast growth rate, high lipid yields, and ability to grow in a broad range of environments. However, many microalgae achieve maximal lipid yields only under stress conditions hindering growth and providing compositions not ideal for biofuel applications. Metabolic engineering of algal fatty acid biosynthesis promises to create strains capable of economically producing fungible and sustainable biofuels. The algal fatty acid biosynthetic pathway has been deduced by homology to bacterial and plant systems, and much of our understanding is gleaned from basic studies in these systems. However, successful engineering of lipid metabolism in algae will necessitate a thorough characterization of the algal fatty acid synthase (FAS) including protein-protein interactions and regulation. This review describes recent efforts to engineer fatty acid biosynthesis toward optimizing microalgae as a biodiesel feedstock.
微藻由于其快速的生长速度、高油脂产量以及能够在广泛的环境中生长,是生物柴油和其他液体燃料的有前途的原料。然而,许多微藻只有在阻碍生长并提供不适于生物燃料应用的组成的胁迫条件下才能达到最大油脂产量。藻类脂肪酸生物合成的代谢工程有望创造出能够经济地生产可互换和可持续生物燃料的菌株。藻类脂肪酸生物合成途径已通过与细菌和植物系统的同源性推断出来,并且我们的大部分理解都来自这些系统的基础研究。然而,要成功地对藻类的脂代谢进行工程改造,就必须对藻类脂肪酸合酶(FAS)进行全面的特性分析,包括蛋白质-蛋白质相互作用和调控。这篇综述描述了为了将微藻优化为生物柴油原料而对脂肪酸生物合成进行工程改造的最新进展。