Radiopharmacy Department, Institute of Clinical Physiology of National Research Council, Via Moruzzi 1, 56100 Pisa, Italy.
Nucl Med Biol. 2013 Aug;40(6):776-87. doi: 10.1016/j.nucmedbio.2013.04.004. Epub 2013 May 14.
The increased demand for molecular imaging tracers useful in assessing and monitoring diseases has stimulated research towards more efficient and flexible radiosynthetic routes, including newer technologies. The traditional vessel-based approach suffers from limitations concerning flexibility, reagent mass needed, hardware requirements, large number of connections and valves, repetitive cleaning procedures and overall big footprint to be shielded from radiation. For these reasons, several research groups have started to investigate the application of the fast growing field of microfluidic chemistry to radiosynthetic procedures. After the first report in 2004, many scientific papers have been published and demonstrated the potential for increased process yields, reduced reagent use, improved flexibility and general ease of setup. This review will address definitions occurring in microfluidics as well as analyze the different approaches under two macro-categories: microvessel and microchannel. In this perspective, several works will be collected, involving the use of positron emitting species ((11)C, (18)F, (64)Cu) and the fewer examples of gamma emitting radionuclides ((99m)Tc, (125/131)I). New directions in microfluidic research applied to PET radiochemistry, future developments and challenges are also discussed.
对用于评估和监测疾病的分子成像示踪剂的需求增加,刺激了更有效和灵活的放射合成途径的研究,包括新技术。传统的基于容器的方法在灵活性、所需试剂质量、硬件要求、大量连接和阀门、重复的清洁程序以及需要屏蔽辐射的整体大型占地面积方面存在局限性。出于这些原因,许多研究小组已经开始研究快速发展的微流控化学在放射合成过程中的应用。在 2004 年的第一份报告之后,已经发表了许多科学论文,证明了提高工艺产率、减少试剂使用、提高灵活性和一般易于设置的潜力。这篇综述将介绍微流控中出现的定义,并根据两个宏观类别分析不同的方法:微管和微通道。在这个角度下,将收集涉及正电子发射物质 ((11)C、(18)F、(64)Cu) 和较少的伽马发射放射性核素 ((99m)Tc、(125/131)I) 使用的一些工作。还讨论了应用于正电子发射断层扫描放射化学的微流控研究的新方向、未来的发展和挑战。