Elkawad Husamelden, Xu Yangyang, Tian Mei, Jin Chenyang, Zhang Hong, Yu Kaiwu, He Qinggang
Department of Nuclear Medicine and PET/CT Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.
College of Chemical & Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China.
Chem Asian J. 2022 Oct 17;17(20):e202200579. doi: 10.1002/asia.202200579. Epub 2022 Sep 15.
In order to accommodate the growing demand for positron emission tomography (PET), it will be necessary to create innovative radiochemical and engineering technologies to optimize the manufacture and development of PET probes. Microfluidic devices allow radiosynthesis to be performed in microscale amounts, significantly impacting PET tracer production. Compared to traditional methods, microfluidic devices can produce PET tracers in a shorter time, higher yields, with lower reagent consumption, higher molar activity, and faster purification. This review examines microfluidic devices from an engineering perspective. Recently developed microfluidic radiosynthesis devices are classified into three categories according to their reaction volume: continuous-flow, batch-flow, and droplet-based microreactors. The principles of device architecture, radiosynthesis process, and the relative strengths and limitations of each category are emphasized by citing typical examples. Finally, the possible future applications of this technology are outlined. A flexible, miniature, fully automated radiochemical microfluidic platform will offer more straightforward and cheaper molecular imaging procedures and the potential for precision medicine that could allow operators to create customized tracers for individual patient doses.
为了满足对正电子发射断层扫描(PET)日益增长的需求,有必要创造创新的放射化学和工程技术,以优化PET探针的制造和开发。微流控装置能够以微量进行放射性合成,对PET示踪剂的生产产生重大影响。与传统方法相比,微流控装置可以在更短的时间内生产PET示踪剂,产率更高,试剂消耗更低,摩尔活性更高,纯化速度更快。本综述从工程学角度审视微流控装置。最近开发的微流控放射性合成装置根据其反应体积分为三类:连续流、间歇流和基于液滴的微反应器。通过引用典型例子,强调了装置架构、放射性合成过程以及每类装置的相对优势和局限性。最后,概述了该技术未来可能的应用。一个灵活、微型、全自动的放射化学微流控平台将提供更直接、更便宜的分子成像程序,以及实现精准医疗的潜力,使操作人员能够为个体患者剂量定制示踪剂。