Suppr超能文献

迈向智能芯片实验室胚胎阵列的嵌入式实验室自动化。

Toward embedded laboratory automation for smart Lab-on-a-Chip embryo arrays.

机构信息

Department of Electrical and Computer Engineering, University of Auckland, Auckland, New Zealand.

出版信息

Biosens Bioelectron. 2013 Oct 15;48:188-96. doi: 10.1016/j.bios.2013.04.033. Epub 2013 Apr 30.

Abstract

Lab-on-a-Chip (LOC) biomicrofluidic technologies are rapidly emerging bioanalytical tools that can miniaturize and revolutionize in situ research on embryos of small vertebrate model organisms such as zebrafish (Danio rerio) and clawed African frog (Xenopus laevis). Despite considerable progress being made in fabrication techniques of chip-based devices, they usually still require excessive and manual actuation and data acquisition that significantly reduce throughput and introduce operator-related analytical bias. This work describes the development of a proof-of-concept embedded platform that integrates an innovative LOC zebrafish embryo array technology with an electronic interface to provide higher levels of laboratory automation for in situ biotests. The integrated platform was designed to perform automatic immobilization, culture and treatment of developing zebrafish embryos during fish embryo toxicity (FET) biotests. The system was equipped with a stepper motor driven stage, solenoid-actuated pinch valves, miniaturized peristaltic pumps as well as Peltier heating module. Furthermore, a Field Programmable Gate Array (FPGA) was used to implement an embedded hardware/software solution and interface to enable real-time control over embryo loading and immobilization; accurate microfluidic flow control; temperature stabilization and also automatic time-resolved image acquisition of developing zebrafish embryos. This work presents evidence that integration of embedded electronic interfaces with microfluidic chip-based technologies can bring the Lab-on-a-Chip a step closer to fully automated analytical systems.

摘要

微流控芯片(LOC)生物微流控技术是一种快速发展的生物分析工具,可以对小型脊椎动物模式生物(如斑马鱼(Danio rerio)和爪蟾(Xenopus laevis))的胚胎进行微型化和变革。尽管基于芯片的设备制造技术取得了相当大的进展,但它们通常仍然需要过度和手动的驱动和数据采集,这大大降低了通量并引入了与操作人员相关的分析偏差。本工作描述了一种概念验证嵌入式平台的开发,该平台将创新的 LOC 斑马鱼胚胎阵列技术与电子接口集成在一起,为原位生物测试提供更高水平的实验室自动化。该集成平台旨在在鱼类胚胎毒性(FET)生物测试中自动固定、培养和处理发育中的斑马鱼胚胎。该系统配备了步进电机驱动的工作台、电磁阀驱动的压合阀、微型蠕动泵以及珀耳帖加热模块。此外,现场可编程门阵列(FPGA)用于实现嵌入式硬件/软件解决方案和接口,以实现对胚胎加载和固定的实时控制;精确的微流控流量控制;温度稳定以及发育中的斑马鱼胚胎的自动时分辨像采集。本工作证明,将嵌入式电子接口与微流控芯片技术集成可以使微流控芯片更接近全自动分析系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验